Dynamics and variability in the pleiotropic effects of adaptation in laboratory budding yeast populations

Abstract

Evolutionary adaptation to a constant environment is driven by the accumulation of mutations which can have a range of unrealized pleiotropic effects in other environments. These pleiotropic consequences of adaptation can influence the emergence of specialists or generalists, and are critical for evolution in temporally or spatially fluctuating environments. While many experiments have examined the pleiotropic effects of adaptation at a snapshot in time, very few have observed the dynamics by which these effects emerge and evolve. Here, we propagated hundreds of diploid and haploid laboratory budding yeast populations in each of three environments, and then assayed their fitness in multiple environments over 1000 generations of evolution. We find that replicate populations evolved in the same condition share common patterns of pleiotropic effects across other environments, which emerge within the first several hundred generations of evolution. However, we also find dynamic and environment-specific variability within these trends: variability in pleiotropic effects tends to increase over time, with the extent of variability depending on the evolution environment. These results suggest shifting and overlapping contributions of chance and contingency to the pleiotropic effects of adaptation, which could influence evolutionary trajectories in complex environments that fluctuate across space and time.

Data availability

Raw amplicon sequencing reads have been deposited in the NCBI BioProject database with accession number PRJNA739738. Source data files are listed in appropriate figure legends. Analysis code is available at https://github.com/amphilli/pleiotropy-dynamics.

The following data sets were generated

Article and author information

Author details

  1. Christopher W Bakerlee

    Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Angela M Phillips

    Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9806-7574
  3. Alex N Nguyen Ba

    Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael M Desai

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    mdesai@oeb.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9581-1150

Funding

National Defense Science and Engineering Graduate

  • Christopher W Bakerlee

National Institutes of Health (GM007598)

  • Christopher W Bakerlee

Howard Hughes Medical Institute (Hanna H. Gray Postdoctoral Fellowship)

  • Angela M Phillips

National Science Foundation (PHY-1914916)

  • Michael M Desai

National Institutes of Health (GM104239)

  • Michael M Desai

Harvard University (FAS Division of Science Research Computing Group Cannon cluster)

  • Michael M Desai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Bakerlee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,403
    views
  • 183
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher W Bakerlee
  2. Angela M Phillips
  3. Alex N Nguyen Ba
  4. Michael M Desai
(2021)
Dynamics and variability in the pleiotropic effects of adaptation in laboratory budding yeast populations
eLife 10:e70918.
https://doi.org/10.7554/eLife.70918

Share this article

https://doi.org/10.7554/eLife.70918

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.