Sepsis leads to lasting changes in phenotype and function of memory CD8 T cells

  1. Isaac J jensen
  2. Xiang Li
  3. Patrick W McGonagill
  4. Qiang Shan
  5. Micaela G Fosdick
  6. Mikaela M Tremblay
  7. Jon CD Houtman
  8. Hai-Hui Xue
  9. Thomas S Griffith
  10. Weiqun Peng
  11. Vladimir P Badovinac  Is a corresponding author
  1. University of Iowa, United States
  2. George Washington University, United States
  3. Hackensack University Medical Center, United States
  4. University of Minnesota, United States

Abstract

The global health burden due to sepsis and the associated cytokine storm is substantial. While early intervention has improved survival during the cytokine storm, those that survive can enter a state of chronic immunoparalysis defined by transient lymphopenia and functional deficits of surviving cells. Memory CD8 T cells provide rapid cytolysis and cytokine production following re-encounter with their cognate antigen to promote long-term immunity, and CD8 T cell impairment due to sepsis can pre-dispose individuals to re-infection. While the acute influence of sepsis on memory CD8 T cells has been characterized, if and to what extent pre-existing memory CD8 T cells recover remains unknown. Here, we observed that central memory CD8 T cells (TCM) from septic patients proliferate more than those from healthy individuals. Utilizing LCMV immune mice and a CLP model to induce sepsis, we demonstrated that TCM proliferation is associated with numerical recovery of pathogen-specific memory CD8 T cells following sepsis-induced lymphopenia. This increased proliferation leads to changes in composition of memory CD8 T cell compartment and altered tissue localization. Further, memory CD8 T cells from sepsis survivors have an altered transcriptional profile and chromatin accessibility indicating long-lasting T cell intrinsic changes. The sepsis-induced changes in the composition of the memory CD8 T cell pool and transcriptional landscape culminated in altered T cell function and reduced capacity to control L. monocytogenes infection. Thus, sepsis leads to long-term alterations in memory CD8 T cell phenotype, protective function and localization potentially changing host capacity to respond to re-infection.

Data availability

Sequencing data are deposited in GEO under accession code GSE174358source data for all figures are provided in associated excel files.

The following data sets were generated

Article and author information

Author details

  1. Isaac J jensen

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3107-3961
  2. Xiang Li

    George Washington University, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick W McGonagill

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Qiang Shan

    Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Micaela G Fosdick

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2427-532X
  6. Mikaela M Tremblay

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jon CD Houtman

    Microbiology and Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hai-Hui Xue

    Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9163-7669
  9. Thomas S Griffith

    Microbiology, Immunology, and Cancer Biology PhD Program, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7205-9859
  10. Weiqun Peng

    George Washington University, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Vladimir P Badovinac

    Pathology, University of Iowa, Iowa City, United States
    For correspondence
    vladimir-badovinac@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3180-2439

Funding

National Institutes of Health (R01AI114543)

  • Vladimir P Badovinac

National Institutes of Health (R21AI157121)

  • Jon CD Houtman

National Institutes of Health (T32AI007511)

  • Isaac J jensen

National Institutes of Health (T32AI007485)

  • Isaac J jensen

Veterans Health Administration (I0BX001324)

  • Thomas S Griffith

National Cancer Institute (P30CA086862)

  • Jon CD Houtman

National Institutes of Health (R21AI147064)

  • Vladimir P Badovinac

National Institutes of Health (R21AI151183)

  • Vladimir P Badovinac

National Institutes of Health (R01GM115462)

  • Thomas S Griffith

National Institutes of Health (R35GM134880)

  • Vladimir P Badovinac

National Institutes of Health (R35GM140881)

  • Thomas S Griffith

National Institutes of Health (R01AI112579)

  • Hai-Hui Xue

National Institutes of Health (R01AI121080)

  • Hai-Hui Xue
  • Weiqun Peng

National Institutes of Health (R01AI139874)

  • Hai-Hui Xue
  • Weiqun Peng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gabrielle T Belz, The University of Queensland, Australia

Ethics

Animal experimentation: Experimental procedures using mice were approved by University of Iowa Animal Care and Use Committee under ACURF protocol #6121915 and #9101915. The experiments performed followed Office of Laboratory Animal Welfare guidelines and PHS Policy on Humane Care and Use of Laboratory Animals. Cervical dislocation was used as the euthanasia method of all experimental mice. Inbred C57Bl/6 (B6, Thy1.2) and TCR-transgenic (TCR-Tg) P14 (Thy1.1) mice were purchased from the National Cancer Institute (Frederick, MD) and maintained in the animal facilities at the University of Iowa at the appropriate biosafety level according to the University of Iowa Animal Care and Use Committee and National Institutes of Health guidelines. Male and female mice >6 weeks of age were used for experiments; no discernable differences were observed based on sex of the animals.

Human subjects: Patients were recruited at the University of Iowa Hospitals and Clinics, an 811-bed academic tertiary care center. Blood sample acquisition, patient data collection, and analysis were approved by the University of Iowa Institutional Review Board (ID #201804822). Informed consent was obtained from patients or their legally authorized representatives.

Version history

  1. Received: June 4, 2021
  2. Accepted: October 14, 2021
  3. Accepted Manuscript published: October 15, 2021 (version 1)
  4. Version of Record published: November 12, 2021 (version 2)

Copyright

© 2021, jensen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,693
    views
  • 264
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Isaac J jensen
  2. Xiang Li
  3. Patrick W McGonagill
  4. Qiang Shan
  5. Micaela G Fosdick
  6. Mikaela M Tremblay
  7. Jon CD Houtman
  8. Hai-Hui Xue
  9. Thomas S Griffith
  10. Weiqun Peng
  11. Vladimir P Badovinac
(2021)
Sepsis leads to lasting changes in phenotype and function of memory CD8 T cells
eLife 10:e70989.
https://doi.org/10.7554/eLife.70989

Share this article

https://doi.org/10.7554/eLife.70989

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.