Analysis of meiosis in Pristionchus pacificus reveals plasticity in homolog pairing and synapsis in the nematode lineage

  1. Regina Rillo-Bohn
  2. Renzo Adilardi
  3. Therese Mitros
  4. Barış Avşaroğlu
  5. Lewis Stevens
  6. Simone Koehler
  7. Joshua Bayes III
  8. Clara Wang
  9. Sabrina Lin
  10. Kayla Alienor Baskevitch
  11. Daniel S Rokhsar
  12. Abby F Dernburg  Is a corresponding author
  1. University of California, Davis, United States
  2. UC Berkeley and HHMI, United States
  3. University of California, Berkeley, United States
  4. Northwestern University, United States
  5. European Molecular Biology Laboratory, Germany
  6. University of California, Berkeley and HHMI, United States

Abstract

Meiosis is conserved across eukaryotes yet varies in the details of its execution. Here we describe a new comparative model system for molecular analysis of meiosis, the nematode Pristionchus pacificus, a distant relative of the widely studied model organism Caenorhabditis elegans. P. pacificus shares many anatomical and other features that facilitate analysis of meiosis in C. elegans. However, while C. elegans has lost the meiosis-specific recombinase Dmc1 and evolved a recombination-independent mechanism to synapse its chromosomes, P. pacificus expresses both DMC-1 and RAD-51. We find that SPO-11 and DMC-1 are required for stable homolog pairing, synapsis, and crossover formation, while RAD-51 is dispensable for these key meiotic processes. RAD-51 and DMC-1 localize sequentially to chromosomes during meiotic prophase and show nonoverlapping functions. We also present a new genetic map for P. pacificus that reveals a crossover landscape very similar to that of C. elegans, despite marked divergence in the regulation of synapsis and crossing-over between these lineages.

Data availability

Sequence data used to generate the recombination map for P. pacificus have been deposited at the NIH Sequence Read Archive under accession number PRJNA734516 and are available at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA734516. These include sequence reads for three parental genomes and 93 hybrid progeny. Genotype calls are provided as Excel files in the Supplemental Data.

The following data sets were generated

Article and author information

Author details

  1. Regina Rillo-Bohn

    University of California, Davis, Davis, CA, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Renzo Adilardi

    Molecular and Cell Biology, UC Berkeley and HHMI, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Therese Mitros

    University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Barış Avşaroğlu

    Molecular and Cell Biology, UC Berkeley and HHMI, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lewis Stevens

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6075-8273
  6. Simone Koehler

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Joshua Bayes III

    Molecular and Cell Biology, UC Berkeley and HHMI, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Clara Wang

    Molecular and Cell Biology, UC Berkeley and HHMI, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sabrina Lin

    Molecular and Cell Biology, UC Berkeley and HHMI, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kayla Alienor Baskevitch

    Molecular and Cell Biology, UC Berkeley and HHMI, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniel S Rokhsar

    University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Abby F Dernburg

    University of California, Berkeley and HHMI, Berkeley, United States
    For correspondence
    afdernburg@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8037-1079

Funding

Howard Hughes Medical Institute

  • Abby F Dernburg

Miller Institute for Basic Research

  • Abby F Dernburg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Rillo-Bohn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,642
    views
  • 229
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Regina Rillo-Bohn
  2. Renzo Adilardi
  3. Therese Mitros
  4. Barış Avşaroğlu
  5. Lewis Stevens
  6. Simone Koehler
  7. Joshua Bayes III
  8. Clara Wang
  9. Sabrina Lin
  10. Kayla Alienor Baskevitch
  11. Daniel S Rokhsar
  12. Abby F Dernburg
(2021)
Analysis of meiosis in Pristionchus pacificus reveals plasticity in homolog pairing and synapsis in the nematode lineage
eLife 10:e70990.
https://doi.org/10.7554/eLife.70990

Share this article

https://doi.org/10.7554/eLife.70990

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.