Abstract

Attempts to minimize scarring remain among the most difficult challenges facing surgeons, despite the use of optimal wound closure techniques. Previously, we reported improved healing of dermal excisional wounds in circadian clock neuronal PAS domain 2 (Npas2)-null mice. In this study, we performed high-throughput drug screening to identify a compound that downregulates Npas2 activity. The hit compound (Dwn1) suppressed circadian Npas2 expression, increased murine dermal fibroblast cell migration, and decreased collagen synthesis in vitro. Based on the in vitro results, Dwn1 was topically applied to iatrogenic full-thickness dorsal cutaneous wounds in a murine model. The Dwn1-treated dermal wounds healed faster with favorable mechanical strength and developed less granulation tissue than the controls. The expression of type I collagen, Tgfb1, and a-smooth muscle actin was significantly decreased in Dwn1-treated wounds, suggesting that hypertrophic scarring and myofibroblast differentiation are attenuated by Dwn1 treatment. NPAS2 may represent an important target for therapeutic approaches to optimal surgical wound management.

Data availability

Raw data were represented in the graphs.

Article and author information

Author details

  1. Yoichiro Shibuya

    Department of Surgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0558-5154
  2. Akishige Hokugo

    Department of Surgery, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    ahokugo@mednet.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7097-3364
  3. Hiroko Okawa

    Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Takeru Kondo

    Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Khalil

    Department of Surgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lixin Wang

    Department of Surgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yvonne Roca

    Department of Surgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Adam Clements

    Department of Surgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hodaka Sasaki

    Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ella Berry

    Department of Surgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ichiro Nishimura

    Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    inishimura@dentistry.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3749-9445
  12. Reza Jarrahy

    Department of Surgery, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    rjarrahy@mednet.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Annenberg Foundation

  • Reza Jarrahy

Plastic Surgery Foundation

  • Akishige Hokugo

UCLA (Innovation Fund)

  • Ichiro Nishimura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All protocols for animal experiments were approved by the University of California Los Angeles (UCLA) Animal Research Committee (ARC# 2003-009) and followed the Public Health Service Policy for the Humane Care and Use of Laboratory Animals and the UCLA Animal Care and Use guidelines.

Copyright

© 2022, Shibuya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,218
    views
  • 192
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yoichiro Shibuya
  2. Akishige Hokugo
  3. Hiroko Okawa
  4. Takeru Kondo
  5. Daniel Khalil
  6. Lixin Wang
  7. Yvonne Roca
  8. Adam Clements
  9. Hodaka Sasaki
  10. Ella Berry
  11. Ichiro Nishimura
  12. Reza Jarrahy
(2022)
Therapeutic downregulation of neuronal PAS domain 2 (Npas2) promotes surgical skin wound healing
eLife 11:e71074.
https://doi.org/10.7554/eLife.71074

Share this article

https://doi.org/10.7554/eLife.71074

Further reading

    1. Medicine
    Mitsuru Sugimoto, Tadayuki Takagi ... Hiromasa Ohira
    Research Article

    Background:

    Post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) is a severe and deadly adverse event following ERCP. The ideal method for predicting PEP risk before ERCP has yet to be identified. We aimed to establish a simple PEP risk score model (SuPER model: Support for PEP Reduction) that can be applied before ERCP.

    Methods:

    This multicenter study enrolled 2074 patients who underwent ERCP. Among them, 1037 patients each were randomly assigned to the development and validation cohorts. In the development cohort, the risk score model for predicting PEP was established via logistic regression analysis. In the validation cohort, the performance of the model was assessed.

    Results:

    In the development cohort, five PEP risk factors that could be identified before ERCP were extracted and assigned weights according to their respective regression coefficients: –2 points for pancreatic calcification, 1 point for female sex, and 2 points for intraductal papillary mucinous neoplasm, a native papilla of Vater, or the pancreatic duct procedures (treated as ‘planned pancreatic duct procedures’ for calculating the score before ERCP). The PEP occurrence rate was 0% among low-risk patients (≤0 points), 5.5% among moderate-risk patients (1–3 points), and 20.2% among high-risk patients (4–7 points). In the validation cohort, the C statistic of the risk score model was 0.71 (95% CI 0.64–0.78), which was considered acceptable. The PEP risk classification (low, moderate, and high) was a significant predictive factor for PEP that was independent of intraprocedural PEP risk factors (precut sphincterotomy and inadvertent pancreatic duct cannulation) (OR 4.2, 95% CI 2.8–6.3; p<0.01).

    Conclusions:

    The PEP risk score allows an estimation of the risk of PEP prior to ERCP, regardless of whether the patient has undergone pancreatic duct procedures. This simple risk model, consisting of only five items, may aid in predicting and explaining the risk of PEP before ERCP and in preventing PEP by allowing selection of the appropriate expert endoscopist and useful PEP prophylaxes.

    Funding:

    No external funding was received for this work.

    1. Medicine
    Yao Li, Hui Xin ... Wei Zhang
    Research Article

    Estrogen significantly impacts women’s health, and postmenopausal hypertension is a common issue characterized by blood pressure fluctuations. Current control strategies for this condition are limited in efficacy, necessitating further research into the underlying mechanisms. Although metabolomics has been applied to study various diseases, its use in understanding postmenopausal hypertension is scarce. Therefore, an ovariectomized rat model was used to simulate postmenopausal conditions. Estrogen levels, blood pressure, and aortic tissue metabolomics were analyzed. Animal models were divided into Sham, OVX, and OVX +E groups. Serum estrogen levels, blood pressure measurements, and aortic tissue metabolomics analyses were performed using radioimmunoassay, UHPLC-Q-TOF, and bioinformatics techniques. Based on the above research content, we successfully established a correlation between low estrogen levels and postmenopausal hypertension in rats. Notable differences in blood pressure parameters and aortic tissue metabolites were observed across the experimental groups. Specifically, metabolites that were differentially expressed, particularly L-alpha-aminobutyric acid (L-AABA), showed potential as a biomarker for postmenopausal hypertension, potentially exerting a protective function through macrophage activation and vascular remodeling. Enrichment analysis revealed alterations in sugar metabolism pathways, such as the Warburg effect and glycolysis, indicating their involvement in postmenopausal hypertension. Overall, this current research provides insights into the metabolic changes associated with postmenopausal hypertension, highlighting the role of L-AABA and sugar metabolism reprogramming in aortic tissue. The findings suggest a potential link between low estrogen levels, macrophage function, and vascular remodeling in the pathogenesis of postmenopausal hypertension. Further investigations are needed to validate these findings and explore their clinical implications for postmenopausal women.