Opioid antagonism modulates wanting-related frontostriatal connectivity

  1. Alexander Soutschek  Is a corresponding author
  2. Susanna C Weber
  3. Thorsten Kahnt
  4. Boris B Quednow
  5. Philippe N Tobler
  1. Ludwig Maximilian University Munich, Germany
  2. University of Zurich, Switzerland
  3. Northwestern University, United States

Abstract

Theoretical accounts distinguish between motivational ('wanting') and hedonic ('liking') dimensions of rewards. Previous animal and human research linked wanting and liking to anatomically and neurochemically distinct brain mechanisms, but it remains unknown how the different brain regions and neurotransmitter systems interact in processing distinct reward dimensions. Here, we assessed how pharmacological manipulations of opioid and dopamine receptor activation modulate the neural processing of wanting and liking in humans in a randomized, placebo-controlled, double-blind clinical trial. Reducing opioid receptor activation with naltrexone selectively reduced wanting of rewards, which on a neural level was reflected by stronger coupling between dorsolateral prefrontal cortex and the striatum under naltrexone compared with placebo. In contrast, reducing dopaminergic neurotransmission with amisulpride revealed no robust effects on behavior or neural activity. Our findings thus provide insights into how opioid receptors mediate neural connectivity related to specifically motivational, not hedonic, aspects of rewards.

Data availability

The behavioral data that support the findings of this study are available on Open Science Framework https://osf.io/6cevt/

Article and author information

Author details

  1. Alexander Soutschek

    Ludwig Maximilian University Munich, Munich, Germany
    For correspondence
    alexander.soutschek@psy.lmu.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8438-7721
  2. Susanna C Weber

    University of Zurich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  3. Thorsten Kahnt

    Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    Thorsten Kahnt, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3575-2670
  4. Boris B Quednow

    University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  5. Philippe N Tobler

    University of Zurich, Zürich, Switzerland
    Competing interests
    No competing interests declared.

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Grants 10001C_188878,100019_176016,and 100014_165884)

  • Philippe N Tobler

Velux Stiftung (981)

  • Philippe N Tobler

Deutsche Forschungsgemeinschaft (SO 1636/2-1)

  • Alexander Soutschek

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided written informed consent. The study was approved by the ethics committee of the canton of Zurich (KEK-ZH-NR2012-0347).

Copyright

© 2021, Soutschek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 708
    views
  • 113
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander Soutschek
  2. Susanna C Weber
  3. Thorsten Kahnt
  4. Boris B Quednow
  5. Philippe N Tobler
(2021)
Opioid antagonism modulates wanting-related frontostriatal connectivity
eLife 10:e71077.
https://doi.org/10.7554/eLife.71077

Share this article

https://doi.org/10.7554/eLife.71077

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.