Abstract

The spatial organization of gut microbiota influences both microbial abundances and host-microbe interactions, but the underlying rules relating bacterial dynamics to large-scale structure remain unclear. To this end we studied experimentally and theoretically the formation of three-dimensional bacterial clusters, a key parameter controlling susceptibility to intestinal transport and access to the epithelium. Inspired by models of structure formation in soft materials, we sought to understand how the distribution of gut bacterial cluster sizes emerges from bacterial-scale kinetics. Analyzing imaging-derived data on cluster sizes for eight different bacterial strains in the larval zebrafish gut, we find a common family of size distributions that decay approximately as power laws with exponents close to -2, becoming shallower for large clusters in a strain-dependent manner. We show that this type of distribution arises naturally from a Yule-Simons-type process in which bacteria grow within clusters and can escape from them, coupled to an aggregation process that tends to condense the system toward a single massive cluster, reminiscent of gel formation. Together, these results point to the existence of general, biophysical principles governing the spatial organization of the gut microbiome that may be useful for inferring fast-timescale dynamics that are experimentally inaccessible.

Data availability

A table of all bacterial cluster sizes analysed in this study is included in the Supplementary Data File. MATLAB code for simulating the models described in the study is available at https://github.com/rplab/cluster_kinetics

The following previously published data sets were used

Article and author information

Author details

  1. Brandon H Schlomann

    University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Raghuveer Parthasarathy

    University of Oregon, Eugene, United States
    For correspondence
    raghu@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6006-4749

Funding

National Institutes of Health (P50GM09891)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

National Institutes of Health (P01GM125576)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

National Institutes of Health (F32AI112094)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

National Institutes of Health (T32GM007759)

  • Raghuveer Parthasarathy

National Science Foundation (1427957)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

James S. McDonnell Foundation

  • Brandon H Schlomann

Kavli Foundation (Kavli Microbiome Ideas Challenge)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

National Institutes of Health (P01HD22486)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The studies that generated the data analyzed in this paper (see cited references) were done in strict accordance with protocols approved by the University of Oregon Institutional Animal Care and Use Committee and following standard protocols.

Copyright

© 2021, Schlomann & Parthasarathy

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,701
    views
  • 256
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brandon H Schlomann
  2. Raghuveer Parthasarathy
(2021)
Gut bacterial aggregates as living gels
eLife 10:e71105.
https://doi.org/10.7554/eLife.71105

Share this article

https://doi.org/10.7554/eLife.71105

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Clara Bekirian, Isabel Valsecchi ... Thierry Fontaine
    Research Article

    The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast Candida albicans is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth. For the first time, we show that β-1,6-glucan production compensates the defect in mannan elongation in the outer layer of the cell wall. In addition, β-1,6-glucan dynamics are also coordinated by host environmental stimuli and stresses with wall remodeling, where the regulation of β-1,6-glucan structure and chain length is a crucial process. As we point out that β-1,6-glucan is exposed at the yeast surface and modulate immune response, β-1,6-glucan must be considered a key factor in host–pathogen interactions.

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Erick E Arroyo-Pérez, John C Hook ... Simon Ringgaard
    Research Article

    The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear. In this study, we discovered a novel protein called FipA that is required for normal FlhF activity and function in polar flagellar synthesis. We demonstrated that membrane-localized FipA interacts with FlhF and is required for normal flagellar synthesis in Vibrio parahaemolyticus, Pseudomonas putida, and Shewanella putrefaciens, and it does so independently of the polar localization mediated by HubP. FipA exhibits a dynamic localization pattern and is present at the designated pole before flagellar synthesis begins, suggesting its role in licensing flagellar formation. This discovery provides insight into a new pathway for regulating flagellum synthesis and coordinating cellular organization in bacteria that rely on polar flagellation and FlhF-dependent localization.