Abstract

The spatial organization of gut microbiota influences both microbial abundances and host-microbe interactions, but the underlying rules relating bacterial dynamics to large-scale structure remain unclear. To this end we studied experimentally and theoretically the formation of three-dimensional bacterial clusters, a key parameter controlling susceptibility to intestinal transport and access to the epithelium. Inspired by models of structure formation in soft materials, we sought to understand how the distribution of gut bacterial cluster sizes emerges from bacterial-scale kinetics. Analyzing imaging-derived data on cluster sizes for eight different bacterial strains in the larval zebrafish gut, we find a common family of size distributions that decay approximately as power laws with exponents close to -2, becoming shallower for large clusters in a strain-dependent manner. We show that this type of distribution arises naturally from a Yule-Simons-type process in which bacteria grow within clusters and can escape from them, coupled to an aggregation process that tends to condense the system toward a single massive cluster, reminiscent of gel formation. Together, these results point to the existence of general, biophysical principles governing the spatial organization of the gut microbiome that may be useful for inferring fast-timescale dynamics that are experimentally inaccessible.

Data availability

A table of all bacterial cluster sizes analysed in this study is included in the Supplementary Data File. MATLAB code for simulating the models described in the study is available at https://github.com/rplab/cluster_kinetics

The following previously published data sets were used

Article and author information

Author details

  1. Brandon H Schlomann

    University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Raghuveer Parthasarathy

    University of Oregon, Eugene, United States
    For correspondence
    raghu@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6006-4749

Funding

National Institutes of Health (P50GM09891)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

National Institutes of Health (P01GM125576)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

National Institutes of Health (F32AI112094)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

National Institutes of Health (T32GM007759)

  • Raghuveer Parthasarathy

National Science Foundation (1427957)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

James S. McDonnell Foundation

  • Brandon H Schlomann

Kavli Foundation (Kavli Microbiome Ideas Challenge)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

National Institutes of Health (P01HD22486)

  • Brandon H Schlomann
  • Raghuveer Parthasarathy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The studies that generated the data analyzed in this paper (see cited references) were done in strict accordance with protocols approved by the University of Oregon Institutional Animal Care and Use Committee and following standard protocols.

Copyright

© 2021, Schlomann & Parthasarathy

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,714
    views
  • 256
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brandon H Schlomann
  2. Raghuveer Parthasarathy
(2021)
Gut bacterial aggregates as living gels
eLife 10:e71105.
https://doi.org/10.7554/eLife.71105

Share this article

https://doi.org/10.7554/eLife.71105

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Louna Fruchard, Anamaria Babosan ... Zeynep Baharoglu
    Research Article

    Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). tgt is required for optimal growth of Vibrio cholerae in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure. We characterized its impact on the overall bacterial proteome, and elucidated the molecular mechanisms underlying the effects of Q34 modification in antibiotic translational stress response. Using molecular reporters, we showed that Q34 impacts the efficiency of decoding at tyrosine TAT and TAC codons. Proteomics analyses revealed that the anti-SoxR factor RsxA is better translated in the absence of tgt. RsxA displays a codon bias toward tyrosine TAT and overabundance of RsxA leads to decreased expression of genes belonging to SoxR oxidative stress regulon. We also identified conditions that regulate tgt expression. We propose that regulation of Q34 modification in response to environmental cues leads to translational reprogramming of transcripts bearing a biased tyrosine codon usage. In silico analysis further identified candidate genes which could be subject to such translational regulation, among which DNA repair factors. Such transcripts, fitting the definition of modification tunable transcripts, are central in the bacterial response to antibiotics.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS's antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium's own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.