Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes

  1. Amanda R Dicks
  2. Grigory I Maksaev
  3. Zainab Harissa
  4. Alireza Savadipour
  5. Ruhang Tang
  6. Nancy Steward
  7. Wolfgang Liedtke
  8. Colin G Nichols
  9. Chia-Lung Wu
  10. Farshid Guilak  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. Regeneron Pharmaceuticals, United States
  3. University of Rochester, United States

Abstract

Mutations in the TRPV4 ion channel can lead to a range of skeletal dysplasias. However, the mechanisms by which TRPV4 mutations lead to distinct disease severity remain unknown. Here, we use CRISPR-Cas9-edited human induced pluripotent stem cells (hiPSCs) harboring either the mild V620I or lethal T89I mutations to elucidate the differential effects on channel function and chondrogenic differentiation. We found that hiPSC-derived chondrocytes with the V620I mutation exhibited increased basal currents through TRPV4. However, both mutations showed more rapid calcium signaling with a reduced overall magnitude in response to TRPV4 agonist GSK1016790A compared to wildtype. There were no differences in overall cartilaginous matrix production, but the V620I mutation resulted in reduced mechanical properties of cartilage matrix later in chondrogenesis. mRNA sequencing revealed that both mutations upregulated several anterior HOX genes and downregulated antioxidant genes CAT and GSTA1 throughout chondrogenesis. BMP4 treatment upregulated several essential hypertrophic genes in WT chondrocytes; however, this hypertrophic maturation response was inhibited in mutant chondrocytes. These results indicate that the TRPV4 mutations alter BMP signaling in chondrocytes and prevent proper chondrocyte hypertrophy, as a potential mechanism for dysfunctional skeletal development. Our findings provide potential therapeutic targets for developing treatments for TRPV4-mediated skeletal dysplasias.

Data availability

All RNAseq data files generated and reported in this study are available on GEO (accession number GSE225446, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE225446).

The following data sets were generated

Article and author information

Author details

  1. Amanda R Dicks

    Department of Biomedical Engineering, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  2. Grigory I Maksaev

    Department of Cell Biology and Physiology, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  3. Zainab Harissa

    Department of Biomedical Engineering, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  4. Alireza Savadipour

    Department of Orthopedic Surgery, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Ruhang Tang

    Department of Orthopedic Surgery, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  6. Nancy Steward

    Department of Orthopedic Surgery, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  7. Wolfgang Liedtke

    Regeneron Pharmaceuticals, Tarrytown, United States
    Competing interests
    Wolfgang Liedtke, Patents on TRPV4 inhibitors have been licensed to TRPblue. Dr. Liedtke is an employee of Regeneron Pharmaceuticals.(US Patents 9,701,675; 10,329,265; and 11,014,896)..
  8. Colin G Nichols

    Department of Cell Biology and Physiology, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4929-2134
  9. Chia-Lung Wu

    Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9598-7036
  10. Farshid Guilak

    Department of Orthopedic Surgery, Washington University in St. Louis, St Louis, United States
    For correspondence
    guilak@wustl.edu
    Competing interests
    Farshid Guilak, Patents on TRPV4 inhibitors licensed to TRPblue Inc. (US Patents 9,701,675; 10,329,265; and 11,014,896)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7380-0330

Funding

National Institutes of Health (AG15768)

  • Farshid Guilak

National Institutes of Health (AG46927)

  • Farshid Guilak

National Institutes of Health (ar072999)

  • Farshid Guilak

National Institutes of Health (AR075899)

  • Chia-Lung Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Di Chen, Chinese Academy of Sciences, China

Version history

  1. Received: June 10, 2021
  2. Preprint posted: June 15, 2021 (view preprint)
  3. Accepted: February 3, 2023
  4. Accepted Manuscript published: February 22, 2023 (version 1)
  5. Version of Record published: February 23, 2023 (version 2)

Copyright

© 2023, Dicks et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,024
    views
  • 143
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amanda R Dicks
  2. Grigory I Maksaev
  3. Zainab Harissa
  4. Alireza Savadipour
  5. Ruhang Tang
  6. Nancy Steward
  7. Wolfgang Liedtke
  8. Colin G Nichols
  9. Chia-Lung Wu
  10. Farshid Guilak
(2023)
Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes
eLife 12:e71154.
https://doi.org/10.7554/eLife.71154

Share this article

https://doi.org/10.7554/eLife.71154

Further reading

    1. Stem Cells and Regenerative Medicine
    Sangeetha Kandoi, Cassandra Martinez ... Deepak A Lamba
    Research Article

    Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder, causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO) account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first-ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (a) show advanced retinal degeneration in a male patient (68 years of age) harboring four transcriptionally active intact copies of rhodopsin, (b) recapitulated the clinical phenotypes using retinal organoids, and (c) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (quantitative real-time PCR [qRT-PCR] and bulk RNA sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300 days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that RHO-CNV associated adRPdevelops as a result of protein overexpression, thereby overloading the photoreceptor post-translational modification machinery.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Junjun Yao, Shaoxing Dai ... Tianqing Li
    Research Article

    While accumulated publications support the existence of neurogenesis in the adult human hippocampus, the homeostasis and developmental potentials of neural stem cells (NSCs) under different contexts remain unclear. Based on our generated single-nucleus atlas of the human hippocampus across neonatal, adult, aging, and injury, we dissected the molecular heterogeneity and transcriptional dynamics of human hippocampal NSCs under different contexts. We further identified new specific neurogenic lineage markers that overcome the lack of specificity found in some well-known markers. Based on developmental trajectory and molecular signatures, we found that a subset of NSCs exhibit quiescent properties after birth, and most NSCs become deep quiescence during aging. Furthermore, certain deep quiescent NSCs are reactivated following stroke injury. Together, our findings provide valuable insights into the development, aging, and reactivation of the human hippocampal NSCs, and help to explain why adult hippocampal neurogenesis is infrequently observed in humans.