Most primary olfactory neurons have individually neutral effects on behavior

  1. Tayfun Tumkaya
  2. Safwan Burhanudin
  3. Asghar Khalilnezhad
  4. James Stewart
  5. Hyungwon Choi
  6. Adam Claridge-Chang  Is a corresponding author
  1. A*STAR, Singapore
  2. Duke NUS Graduate Medical School, Singapore
  3. National University of Singapore, Singapore

Abstract

Animals use olfactory receptors to navigate mates, food, and danger. However, for complex olfactory systems, it is unknown what proportion of primary olfactory sensory neurons can individually drive avoidance or attraction. Similarly, the rules that govern behavioral responses to receptor combinations are unclear. We used optogenetic analysis in Drosophila to map the behavior elicited by olfactory-receptor neuron (ORN) classes: just one-fifth of ORN-types drove either avoidance or attraction. Although wind and hunger are closely linked to olfaction, neither had much effect on single-class responses. Several pooling rules have been invoked to explain how ORN types combine their behavioral influences; we activated two-way combinations and compared patterns of single- and double-ORN responses: these comparisons were inconsistent with simple pooling. We infer that the majority of primary olfactory sensory neurons have neutral behavioral effects individually, but participate in broad, odor-elicited ensembles with potent behavioral effects arising from complex interactions.

Data availability

Data and code availability:All of the data generated by this study are available to download from Zenodo (https://doi.org/10.5281/zenodo.3994033). The code is available at https://github.com/ttumkaya/WALiSuite_V2.0.

The following data sets were generated

Article and author information

Author details

  1. Tayfun Tumkaya

    Institute for Molecular and Cell Biology, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8425-3360
  2. Safwan Burhanudin

    Institute for Molecular and Cell Biology, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Asghar Khalilnezhad

    Institute for Molecular and Cell Biology, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. James Stewart

    Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Hyungwon Choi

    Department of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6687-3088
  6. Adam Claridge-Chang

    Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical School, Singapore, Singapore
    For correspondence
    claridge-chang.adam@duke-nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4583-3650

Funding

Agency for Science, Technology and Research (AGA-SINGA)

  • Tayfun Tumkaya

Agency for Science, Technology and Research (Block grant)

  • Tayfun Tumkaya
  • James Stewart
  • Hyungwon Choi
  • Adam Claridge-Chang

Ministry of Education - Singapore (MOE2013-T2-2-054)

  • Tayfun Tumkaya
  • James Stewart
  • Adam Claridge-Chang

Ministry of Education - Singapore (MOE2017-T2-1-089)

  • Tayfun Tumkaya
  • James Stewart
  • Adam Claridge-Chang

Ministry of Education - Singapore (MOE-2016-T2-1-001)

  • Hyungwon Choi

National Medical Research Council (NMRC-CG-2017-M009)

  • Hyungwon Choi

Duke-NUS Medical School (Block grant)

  • Adam Claridge-Chang

Agency for Science, Technology and Research (JCO-1231AFG030)

  • James Stewart
  • Adam Claridge-Chang

Agency for Science, Technology and Research (JCO-1431AFG120)

  • James Stewart
  • Adam Claridge-Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Tumkaya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,989
    views
  • 288
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tayfun Tumkaya
  2. Safwan Burhanudin
  3. Asghar Khalilnezhad
  4. James Stewart
  5. Hyungwon Choi
  6. Adam Claridge-Chang
(2022)
Most primary olfactory neurons have individually neutral effects on behavior
eLife 11:e71238.
https://doi.org/10.7554/eLife.71238

Share this article

https://doi.org/10.7554/eLife.71238

Further reading

    1. Neuroscience
    Alessandro Piccin, Anne-Emilie Allain ... Angelo Contarino
    Research Article

    Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.

    1. Neuroscience
    Sean M Perkins, Elom A Amematsro ... Mark M Churchland
    Research Article

    Decoders for brain-computer interfaces (BCIs) assume constraints on neural activity, chosen to reflect scientific beliefs while yielding tractable computations. Recent scientific advances suggest that the true constraints on neural activity, especially its geometry, may be quite different from those assumed by most decoders. We designed a decoder, MINT, to embrace statistical constraints that are potentially more appropriate. If those constraints are accurate, MINT should outperform standard methods that explicitly make different assumptions. Additionally, MINT should be competitive with expressive machine learning methods that can implicitly learn constraints from data. MINT performed well across tasks, suggesting its assumptions are well-matched to the data. MINT outperformed other interpretable methods in every comparison we made. MINT outperformed expressive machine learning methods in 37 of 42 comparisons. MINT’s computations are simple, scale favorably with increasing neuron counts, and yield interpretable quantities such as data likelihoods. MINT’s performance and simplicity suggest it may be a strong candidate for many BCI applications.