Most primary olfactory neurons have individually neutral effects on behavior

  1. Tayfun Tumkaya
  2. Safwan Burhanudin
  3. Asghar Khalilnezhad
  4. James Stewart
  5. Hyungwon Choi
  6. Adam Claridge-Chang  Is a corresponding author
  1. A*STAR, Singapore
  2. Duke-NUS Medical School, Singapore
  3. National University of Singapore, Singapore

Abstract

Animals use olfactory receptors to navigate mates, food, and danger. However, for complex olfactory systems, it is unknown what proportion of primary olfactory sensory neurons can individually drive avoidance or attraction. Similarly, the rules that govern behavioral responses to receptor combinations are unclear. We used optogenetic analysis in Drosophila to map the behavior elicited by olfactory-receptor neuron (ORN) classes: just one-fifth of ORN-types drove either avoidance or attraction. Although wind and hunger are closely linked to olfaction, neither had much effect on single-class responses. Several pooling rules have been invoked to explain how ORN types combine their behavioral influences; we activated two-way combinations and compared patterns of single- and double-ORN responses: these comparisons were inconsistent with simple pooling. We infer that the majority of primary olfactory sensory neurons have neutral behavioral effects individually, but participate in broad, odor-elicited ensembles with potent behavioral effects arising from complex interactions.

Data availability

Data and code availability:All of the data generated by this study are available to download from Zenodo (https://doi.org/10.5281/zenodo.3994033). The code is available at https://github.com/ttumkaya/WALiSuite_V2.0.

The following data sets were generated

Article and author information

Author details

  1. Tayfun Tumkaya

    Institute for Molecular and Cell Biology, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8425-3360
  2. Safwan Burhanudin

    Institute for Molecular and Cell Biology, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Asghar Khalilnezhad

    Institute for Molecular and Cell Biology, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. James Stewart

    Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Hyungwon Choi

    Department of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6687-3088
  6. Adam Claridge-Chang

    Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
    For correspondence
    claridge-chang.adam@duke-nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4583-3650

Funding

Agency for Science, Technology and Research (AGA-SINGA)

  • Tayfun Tumkaya

Agency for Science, Technology and Research (Block grant)

  • Tayfun Tumkaya
  • James Stewart
  • Hyungwon Choi
  • Adam Claridge-Chang

Ministry of Education - Singapore (MOE2013-T2-2-054)

  • Tayfun Tumkaya
  • James Stewart
  • Adam Claridge-Chang

Ministry of Education - Singapore (MOE2017-T2-1-089)

  • Tayfun Tumkaya
  • James Stewart
  • Adam Claridge-Chang

Ministry of Education - Singapore (MOE-2016-T2-1-001)

  • Hyungwon Choi

National Medical Research Council (NMRC-CG-2017-M009)

  • Hyungwon Choi

Duke-NUS Medical School (Block grant)

  • Adam Claridge-Chang

Agency for Science, Technology and Research (JCO-1231AFG030)

  • James Stewart
  • Adam Claridge-Chang

Agency for Science, Technology and Research (JCO-1431AFG120)

  • James Stewart
  • Adam Claridge-Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Tumkaya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,028
    views
  • 288
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tayfun Tumkaya
  2. Safwan Burhanudin
  3. Asghar Khalilnezhad
  4. James Stewart
  5. Hyungwon Choi
  6. Adam Claridge-Chang
(2022)
Most primary olfactory neurons have individually neutral effects on behavior
eLife 11:e71238.
https://doi.org/10.7554/eLife.71238

Share this article

https://doi.org/10.7554/eLife.71238

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Akanksha Bafna, Gareth Banks ... Patrick M Nolan
    Research Article

    The mammalian suprachiasmatic nucleus (SCN), situated in the ventral hypothalamus, directs daily cellular and physiological rhythms across the body. The SCN clockwork is a self-sustaining transcriptional-translational feedback loop (TTFL) that in turn coordinates the expression of clock-controlled genes (CCGs) directing circadian programmes of SCN cellular activity. In the mouse, the transcription factor, ZFHX3 (zinc finger homeobox-3), is necessary for the development of the SCN and influences circadian behaviour in the adult. The molecular mechanisms by which ZFHX3 affects the SCN at transcriptomic and genomic levels are, however, poorly defined. Here, we used chromatin immunoprecipitation sequencing to map the genomic localization of ZFHX3-binding sites in SCN chromatin. To test for function, we then conducted comprehensive RNA sequencing at six distinct times-of-day to compare the SCN transcriptional profiles of control and ZFHX3-conditional null mutants. We show that the genome-wide occupancy of ZFHX3 occurs predominantly around gene transcription start sites, co-localizing with known histone modifications, and preferentially partnering with clock transcription factors (CLOCK, BMAL1) to regulate clock gene(s) transcription. Correspondingly, we show that the conditional loss of ZFHX3 in the adult has a dramatic effect on the SCN transcriptome, including changes in the levels of transcripts encoding elements of numerous neuropeptide neurotransmitter systems while attenuating the daily oscillation of the clock TF Bmal1. Furthermore, various TTFL genes and CCGs exhibited altered circadian expression profiles, consistent with an advanced in daily behavioural rhythms under 12 h light–12 h dark conditions. Together, these findings reveal the extensive genome-wide regulation mediated by ZFHX3 in the central clock that orchestrates daily timekeeping in mammals.

    1. Neuroscience
    Hailin Ai, Weiru Lin ... Peng Zhang
    Research Article

    Although parallel processing has been extensively studied in the low-level geniculostriate pathway and the high-level dorsal and ventral visual streams, less is known at the intermediate-level visual areas. In this study, we employed high-resolution fMRI at 7T to investigate the columnar and laminar organizations for color, disparity, and naturalistic texture in the human secondary visual cortex (V2), and their informational connectivity with lower- and higher-order visual areas. Although fMRI activations in V2 showed reproducible interdigitated color-selective thin and disparity-selective thick ‘stripe’ columns, we found no clear evidence of columnar organization for naturalistic textures. Cortical depth-dependent analyses revealed the strongest color-selectivity in the superficial layers of V2, along with both feedforward and feedback informational connectivity with V1 and V4. Disparity selectivity was similar across different cortical depths of V2, which showed significant feedforward and feedback connectivity with V1 and V3ab. Interestingly, the selectivity for naturalistic texture was strongest in the deep layers of V2, with significant feedback connectivity from V4. Thus, while local circuitry within cortical columns is crucial for processing color and disparity information, feedback signals from V4 are involved in generating the selectivity for naturalistic textures in area V2.