Pyruvate:ferredoxin oxidoreductase and low abundant ferredoxins support aerobic photomixotrophic growth in cyanobacteria

  1. Yingying Wang
  2. Xi Chen
  3. Katharina Spengler
  4. Karoline Terberger
  5. Marko Boehm
  6. Jens Appel
  7. Thomas Barske
  8. Stefan Timm
  9. Natalia Battchikova
  10. Martin Hagemann
  11. Kirstin Gutekunst  Is a corresponding author
  1. Christian-Albrechts University, Germany
  2. University of Kassel, Germany
  3. University of Rostock, Germany
  4. University of Turku, Finland

Abstract

The decarboxylation of pyruvate is a central reaction in the carbon metabolism of all organisms. It is catalyzed by the pyruvate:ferredoxin oxidoreductase (PFOR) and the pyruvate dehydrogenase (PDH) complex. Whereas PFOR reduces ferredoxin, the PDH complex utilizes NAD+. Anaerobes rely on PFOR, which was replaced during evolution by the PDH complex found in aerobes. Cyanobacteria possess both enzyme systems. Our data challenge the view that PFOR is exclusively utilized for fermentation. Instead, we show, that the cyanobacterial PFOR is stable in the presence of oxygen in vitro and is required for optimal photomixotrophic growth under aerobic and highly reducing conditions while the PDH complex is inactivated. We found that cells rely on a general shift from utilizing NAD(H)-dependent to ferredoxin-dependent enzymes under these conditions. The utilization of ferredoxins instead of NAD(H) saves a greater share of the Gibbs free energy, instead of wasting it as heat. This obviously simultaneously decelerates metabolic reactions as they operate closer to their thermodynamic equilibrium. It is common thought that during evolution, ferredoxins were replaced by NAD(P)H due to their higher stability in an oxidizing atmosphere. However, utilization of NAD(P)H could also have been favored due to a higher competitiveness because of an accelerated metabolism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1,2, 3 and Figures supplement 1,2,3,4,5,6,7,8 as mentioned in the transparent report.

Article and author information

Author details

  1. Yingying Wang

    Department of Biology, Christian-Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0603-6691
  2. Xi Chen

    Department of Biology, Christian-Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Katharina Spengler

    Department of Biology, Christian-Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Karoline Terberger

    Department of Biology, Christian-Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marko Boehm

    Department of Molecular Plant Physiology, University of Kassel, Kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jens Appel

    Department of Molecular Plant Physiology, University of Kassel, Kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Barske

    Plant Physiology Department, University of Rostock, Rostock, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefan Timm

    Plant Physiology Department, University of Rostock, Rostock, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3105-6296
  9. Natalia Battchikova

    Department of Biochemistry, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  10. Martin Hagemann

    Plant Physiology Department, University of Rostock, Rostock, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Kirstin Gutekunst

    Department of Molecular Plant Physiology, University of Kassel, Kassel, Germany
    For correspondence
    kirstin.gutekunst@uni-kassel.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4366-423X

Funding

Deutsche Forschungsgemeinschaft (DFG Gu1522/2-1)

  • Kirstin Gutekunst

Chinese Government Scholarship (201406320187)

  • Yingying Wang

Deutsche Forschungsgemeinschaft (HA2002/23-1)

  • Thomas Barske

Deutsche Forschungsgemeinschaft (FOR2816)

  • Martin Hagemann
  • Kirstin Gutekunst

Bundesministerium für Bildung und Forschung (BMBF FP309)

  • Marko Boehm
  • Jens Appel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,752
    views
  • 356
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yingying Wang
  2. Xi Chen
  3. Katharina Spengler
  4. Karoline Terberger
  5. Marko Boehm
  6. Jens Appel
  7. Thomas Barske
  8. Stefan Timm
  9. Natalia Battchikova
  10. Martin Hagemann
  11. Kirstin Gutekunst
(2022)
Pyruvate:ferredoxin oxidoreductase and low abundant ferredoxins support aerobic photomixotrophic growth in cyanobacteria
eLife 11:e71339.
https://doi.org/10.7554/eLife.71339

Share this article

https://doi.org/10.7554/eLife.71339

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.

    1. Biochemistry and Chemical Biology
    2. Physics of Living Systems
    Debabrata Dey, Shir Marciano ... Gideon Schreiber
    Research Article

    For drugs to be active they have to reach their targets. Within cells this requires crossing the cell membrane, and then free diffusion, distribution, and availability. Here, we explored the in-cell diffusion rates and distribution of a series of small molecular fluorescent drugs, in comparison to proteins, by microscopy and fluorescence recovery after photobleaching (FRAP). While all proteins diffused freely, we found a strong correlation between pKa and the intracellular diffusion and distribution of small molecule drugs. Weakly basic, small-molecule drugs displayed lower fractional recovery after photobleaching and 10- to-20-fold slower diffusion rates in cells than in aqueous solutions. As, more than half of pharmaceutical drugs are weakly basic, they, are protonated in the cell cytoplasm. Protonation, facilitates the formation of membrane impermeable ionic form of the weak base small molecules. This results in ion trapping, further reducing diffusion rates of weakly basic small molecule drugs under macromolecular crowding conditions where other nonspecific interactions become more relevant and dominant. Our imaging studies showed that acidic organelles, particularly the lysosome, captured these molecules. Surprisingly, blocking lysosomal import only slightly increased diffusion rates and fractional recovery. Conversely, blocking protonation by N-acetylated analogues, greatly enhanced their diffusion and fractional recovery after FRAP. Based on these results, N-acetylation of small molecule drugs may improve the intracellular availability and distribution of weakly basic, small molecule drugs within cells.