Pyruvate:ferredoxin oxidoreductase and low abundant ferredoxins support aerobic photomixotrophic growth in cyanobacteria

  1. Yingying Wang
  2. Xi Chen
  3. Katharina Spengler
  4. Karoline Terberger
  5. Marko Boehm
  6. Jens Appel
  7. Thomas Barske
  8. Stefan Timm
  9. Natalia Battchikova
  10. Martin Hagemann
  11. Kirstin Gutekunst  Is a corresponding author
  1. Christian-Albrechts University, Germany
  2. University of Kassel, Germany
  3. University of Rostock, Germany
  4. University of Turku, Finland

Abstract

The decarboxylation of pyruvate is a central reaction in the carbon metabolism of all organisms. It is catalyzed by the pyruvate:ferredoxin oxidoreductase (PFOR) and the pyruvate dehydrogenase (PDH) complex. Whereas PFOR reduces ferredoxin, the PDH complex utilizes NAD+. Anaerobes rely on PFOR, which was replaced during evolution by the PDH complex found in aerobes. Cyanobacteria possess both enzyme systems. Our data challenge the view that PFOR is exclusively utilized for fermentation. Instead, we show, that the cyanobacterial PFOR is stable in the presence of oxygen in vitro and is required for optimal photomixotrophic growth under aerobic and highly reducing conditions while the PDH complex is inactivated. We found that cells rely on a general shift from utilizing NAD(H)-dependent to ferredoxin-dependent enzymes under these conditions. The utilization of ferredoxins instead of NAD(H) saves a greater share of the Gibbs free energy, instead of wasting it as heat. This obviously simultaneously decelerates metabolic reactions as they operate closer to their thermodynamic equilibrium. It is common thought that during evolution, ferredoxins were replaced by NAD(P)H due to their higher stability in an oxidizing atmosphere. However, utilization of NAD(P)H could also have been favored due to a higher competitiveness because of an accelerated metabolism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1,2, 3 and Figures supplement 1,2,3,4,5,6,7,8 as mentioned in the transparent report.

Article and author information

Author details

  1. Yingying Wang

    Department of Biology, Christian-Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0603-6691
  2. Xi Chen

    Department of Biology, Christian-Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Katharina Spengler

    Department of Biology, Christian-Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Karoline Terberger

    Department of Biology, Christian-Albrechts University, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marko Boehm

    Department of Molecular Plant Physiology, University of Kassel, Kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jens Appel

    Department of Molecular Plant Physiology, University of Kassel, Kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Barske

    Plant Physiology Department, University of Rostock, Rostock, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefan Timm

    Plant Physiology Department, University of Rostock, Rostock, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3105-6296
  9. Natalia Battchikova

    Department of Biochemistry, University of Turku, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  10. Martin Hagemann

    Plant Physiology Department, University of Rostock, Rostock, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Kirstin Gutekunst

    Department of Molecular Plant Physiology, University of Kassel, Kassel, Germany
    For correspondence
    kirstin.gutekunst@uni-kassel.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4366-423X

Funding

Deutsche Forschungsgemeinschaft (DFG Gu1522/2-1)

  • Kirstin Gutekunst

Chinese Government Scholarship (201406320187)

  • Yingying Wang

Deutsche Forschungsgemeinschaft (HA2002/23-1)

  • Thomas Barske

Deutsche Forschungsgemeinschaft (FOR2816)

  • Martin Hagemann
  • Kirstin Gutekunst

Bundesministerium für Bildung und Forschung (BMBF FP309)

  • Marko Boehm
  • Jens Appel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,889
    views
  • 372
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.71339

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.