Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom forming fungi (Agaricomycetes)

  1. Zsolt Merényi
  2. Máté Virágh
  3. Emile Gluck-Thaler
  4. Jason C Slot
  5. Brigitta Kiss
  6. Torda Varga
  7. András Geösel
  8. Botond Hegedüs
  9. Balázs Bálint
  10. László G Nagy  Is a corresponding author
  1. Biological Research Center, Hungary
  2. University of Pennsylvania, United States
  3. Ohio State University, United States
  4. Hungarian University of Agriculture and Life Sciences, Hungary

Abstract

Multicellularity has been one of the most important innovations in the history of life. The role of gene regulatory changes in driving transitions to multicellularity is being increasingly recognized; however, factors influencing gene expression patterns are poorly known in many clades. Here we compared the developmental transcriptomes of complex multicellular fruiting bodies of eight Agaricomycetes and Cryptococcus neoformans, a closely related human pathogen with a simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, natural antisense transcripts and developmental gene expression, but not RNA editing or a 'developmental hourglass' act in concert to shape its transcriptome during fruiting body development. We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young genes showed more developmental and allele-specific expression variation, possibly because of weaker evolutionary constraint, suggestive of non-adaptive expression variance in fruiting bodies. These results prompted us to define a set of conserved genes specifically regulated only during complex morphogenesis by excluding young genes and accounting for deeply conserved ones shared with species showing simple sexual development. Analysis of the resulting gene set revealed evolutionary and functional associations with complex multicellularity, which allowed us to speculate they are involved in complex multicellular morphogenesis of mushroom fruiting bodies.

Data availability

Raw RNA-Seq reads have been deposited to NCBI's GEO archive (GSE176181).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Zsolt Merényi

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  2. Máté Virágh

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Emile Gluck-Thaler

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jason C Slot

    Department of Plant Pathology, Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6731-3405
  5. Brigitta Kiss

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Torda Varga

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  7. András Geösel

    Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  8. Botond Hegedüs

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  9. Balázs Bálint

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  10. László G Nagy

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    For correspondence
    lnagy@fungenomelab.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4102-8566

Funding

Hungarian National Research, Development, and Innovation Office (GINOP-2.3.2-15-2016-00052)

  • László G Nagy

Momentum program of the Hungarian Academy of Science (LP2019-13/2019)

  • László G Nagy

European Research Council (758161)

  • László G Nagy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Merényi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zsolt Merényi
  2. Máté Virágh
  3. Emile Gluck-Thaler
  4. Jason C Slot
  5. Brigitta Kiss
  6. Torda Varga
  7. András Geösel
  8. Botond Hegedüs
  9. Balázs Bálint
  10. László G Nagy
(2022)
Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom forming fungi (Agaricomycetes)
eLife 11:e71348.
https://doi.org/10.7554/eLife.71348

Share this article

https://doi.org/10.7554/eLife.71348

Further reading

    1. Developmental Biology
    Wenqing Li, Sara McCurdy ... Mark H Ginsberg
    Research Advance

    Previously, we showed that propranolol reduces experimental murine cerebral cavernous malformations (CCMs) and prevents embryonic caudal venous plexus (CVP) lesions in zebrafish that follow mosaic inactivation of ccm2 (Li et al., 2021). Because morpholino silencing of the β1 adrenergic receptor (adrb1) prevents the embryonic CVP lesion, we proposed that adrb1 plays a role in CCM pathogenesis. Here, we report that adrb1-/- zebrafish exhibited 86% fewer CVP lesions and 87% reduction of CCM lesion volume relative to wild type brood mates at 2dpf and 8–10 weeks stage, respectively. Treatment with metoprolol, a β1 selective antagonist, yielded a similar reduction in CCM lesion volume. Adrb1-/- zebrafish embryos exhibited reduced heart rate and contractility and reduced CVP blood flow. Similarly, slowing the heart and eliminating the blood flow in CVP by administration of 2,3-BDM suppressed the CVP lesion. In sum, our findings provide genetic and pharmacological evidence that the therapeutic effect of propranolol on CCM is achieved through β1 receptor antagonism.

    1. Developmental Biology
    Igor Kondrychyn, Liqun He ... Li-Kun Phng
    Research Article

    Cell migration is a key process in the shaping and formation of tissues. During sprouting angiogenesis, endothelial tip cells invade avascular tissues by generating actomyosin-dependent forces that drive cell migration and vascular expansion. Surprisingly, endothelial cells (ECs) can still invade if actin polymerization is inhibited. In this study, we show that endothelial tip cells employ an alternative mechanism of cell migration that is dependent on Aquaporin (Aqp)-mediated water inflow and increase in hydrostatic pressure. In the zebrafish, ECs express aqp1a.1 and aqp8a.1 in newly formed vascular sprouts in a VEGFR2-dependent manner. Aqp1a.1 and Aqp8a.1 loss-of-function studies show an impairment in intersegmental vessels formation because of a decreased capacity of tip cells to increase their cytoplasmic volume and generate membrane protrusions, leading to delayed tip cell emergence from the dorsal aorta and slower migration. Further inhibition of actin polymerization resulted in a greater decrease in sprouting angiogenesis, indicating that ECs employ two mechanisms for robust cell migration in vivo. Our study thus highlights an important role of hydrostatic pressure in tissue morphogenesis.