The inner mechanics of Rhodopsin Guanylyl Cyclase during cGMP-formation revealed by real-time FTIR spectroscopy

  1. Paul Fischer  Is a corresponding author
  2. Shatanik Mukherjee
  3. Enrico Peter
  4. Matthias Broser
  5. Franz Bartl
  6. Peter Hegemann
  1. Humboldt-Universität zu Berlin, Germany
  2. Center of Advanced European Studies and Research, Germany
  3. Humboldt University of Berlin, Germany

Abstract

Enzymerhodopsins represent a recently discovered class of rhodopsins which includes histidine kinase rhodopsin, rhodopsin phosphodiesterases and rhodopsin guanylyl cyclases (RGCs). The regulatory influence of the rhodopsin domain on the enzyme activity is only partially understood and holds the key for a deeper understanding of intra-molecular signaling pathways. Here we present a UV-Vis and FTIR study about the light-induced dynamics of a RGC from the fungus Catenaria anguillulae, which provides insights into the catalytic process. After the spectroscopic characterization of the late rhodopsin photoproducts, we analyzed truncated variants and revealed the involvement of the cytosolic N-terminus in the structural rearrangements upon photo-activation of the protein. We tracked the catalytic reaction of RGC and the free GC domain independently by UV-light induced release of GTP from the photolabile NPE-GTP substrate. Our results show substrate binding to the dark-adapted RGC and GC alike and reveal differences between the constructs attributable to the regulatory influence of the rhodopsin on the conformation of the binding pocket. By monitoring the phosphate rearrangement during cGMP and pyrophosphate formation in light-activated RGC, we were able to confirm the M state as the active state of the protein. The described setup and experimental design enable real-time monitoring of substrate turnover in light-activated enzymes on a molecular scale, thus opening the pathway to a deeper understanding of enzyme activity and protein-protein interactions.

Data availability

Data files have been provided on Dryad (doi:10.5061/dryad.6wwpzgmzx) for Figure 4 and 5 as well as for the homology structures of the protein presented in the appendices, upon which figure 6 is based. This includes the protein prediction by AlphaFold 2.

The following data sets were generated

Article and author information

Author details

  1. Paul Fischer

    Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    paul.fischer.2@hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3766-9085
  2. Shatanik Mukherjee

    Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7359-9339
  3. Enrico Peter

    Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7913-5597
  4. Matthias Broser

    Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Franz Bartl

    Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Hegemann

    Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3589-6452

Funding

Deutsche Forschungsgemeinschaft (221545957 B2+B5)

  • Franz Bartl
  • Peter Hegemann

Deutsche Forschungsgemeinschaft (SFB1315-327654276)

  • Peter Hegemann

Deutsche Forschungsgemeinschaft (390540038)

  • Peter Hegemann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Baron Chanda, Washington University in St. Louis, United States

Version history

  1. Received: June 17, 2021
  2. Accepted: October 18, 2021
  3. Accepted Manuscript published: October 19, 2021 (version 1)
  4. Accepted Manuscript updated: October 20, 2021 (version 2)
  5. Accepted Manuscript updated: October 25, 2021 (version 3)
  6. Version of Record published: November 8, 2021 (version 4)

Copyright

© 2021, Fischer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,153
    views
  • 218
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Fischer
  2. Shatanik Mukherjee
  3. Enrico Peter
  4. Matthias Broser
  5. Franz Bartl
  6. Peter Hegemann
(2021)
The inner mechanics of Rhodopsin Guanylyl Cyclase during cGMP-formation revealed by real-time FTIR spectroscopy
eLife 10:e71384.
https://doi.org/10.7554/eLife.71384

Share this article

https://doi.org/10.7554/eLife.71384

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.