Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies

  1. Angela M Phillips
  2. Katherine R Lawrence
  3. Alief Moulana
  4. Thomas Dupic
  5. Jeffrey Chang
  6. Milo S Johnson
  7. Ivana Cvijovic
  8. Thierry Mora
  9. Aleksandra M Walczak
  10. Michael M Desai  Is a corresponding author
  1. Harvard University, United States
  2. Massachusetts Institute of Technology, United States
  3. Stanford University, United States
  4. École Normale Supérieure, France

Abstract

Over the past two decades, several broadly neutralizing antibodies (bnAbs) that confer protection against diverse influenza strains have been isolated. Structural and biochemical characterization of these bnAbs has provided molecular insight into how they bind distinct antigens. However, our understanding of the evolutionary pathways leading to bnAbs, and thus how best to elicit them, remains limited. Here, we measure equilibrium dissociation constants of combinatorially complete mutational libraries for two naturally isolated influenza bnAbs (CR9114, 16 heavy-chain mutations; CR6261, 11 heavy-chain mutations), reconstructing all possible evolutionary intermediates back to the unmutated germline sequences. We find that these two libraries exhibit strikingly different patterns of breadth: while many variants of CR6261 display moderate affinity to diverse antigens, those of CR9114 display appreciable affinity only in specific, nested combinations. By examining the extensive pairwise and higher-order epistasis between mutations, we find key sites with strong synergistic interactions that are highly similar across antigens for CR6261 and different for CR9114. Together, these features of the binding affinity landscapes strongly favor sequential acquisition of affinity to diverse antigens for CR9114, while the acquisition of breadth to more similar antigens for CR6261 is less constrained. These results, if generalizable to other bnAbs, may explain the molecular basis for the widespread observation that sequential exposure favors greater breadth, and such mechanistic insight will be essential for predicting and eliciting broadly protective immune responses.

Data availability

Data and code used for this study are available at https://github.com/klawrence26/bnab-landscapes. CR9114 data are also available in an interactive data browser at https://yodabrowser.netlify.app/yoda_browser/.FASTQ files from high-throughput sequencing have been deposited in the NCBI BioProject database with accession number PRJNA741613, and will be publicly released upon acceptance.

The following data sets were generated

Article and author information

Author details

  1. Angela M Phillips

    Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Katherine R Lawrence

    Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Alief Moulana

    Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Thomas Dupic

    Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Jeffrey Chang

    Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Milo S Johnson

    Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0169-2494
  7. Ivana Cvijovic

    Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6272-2979
  8. Thierry Mora

    École Normale Supérieure, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  9. Aleksandra M Walczak

    École Normale Supérieure, Paris, France
    Competing interests
    Aleksandra M Walczak, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  10. Michael M Desai

    Harvard University, Cambridge, United States
    For correspondence
    mdesai@oeb.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9581-1150

Funding

Howard Hughes Medical Institute (Hanna H. Gray Postdoctoral Fellowship)

  • Angela M Phillips

International Human Frontier Science Program Organization

  • Thomas Dupic

The NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard (1764269)

  • Katherine R Lawrence

Hertz Foundation (Graduate Fellowship Award)

  • Katherine R Lawrence

National Science Foundation (Graduate Research Fellowship Program)

  • Katherine R Lawrence

National Science Foundation (Graduate Research Fellowship Program)

  • Milo S Johnson

National Science Foundation (Graduate Research Fellowship Program)

  • Jeffrey Chang

European Research Council (COG 724208)

  • Thierry Mora
  • Aleksandra M Walczak

National Institutes of Health (GM104239)

  • Michael M Desai

National Science Foundation (PHY-1914916)

  • Michael M Desai

Stanford University (Stanford Science Fellowship)

  • Ivana Cvijovic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Phillips et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,701
    views
  • 537
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angela M Phillips
  2. Katherine R Lawrence
  3. Alief Moulana
  4. Thomas Dupic
  5. Jeffrey Chang
  6. Milo S Johnson
  7. Ivana Cvijovic
  8. Thierry Mora
  9. Aleksandra M Walczak
  10. Michael M Desai
(2021)
Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies
eLife 10:e71393.
https://doi.org/10.7554/eLife.71393

Share this article

https://doi.org/10.7554/eLife.71393

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Julie N Chuong, Nadav Ben Nun ... David Gresham
    Research Article

    Copy number variants (CNVs) are an important source of genetic variation underlying rapid adaptation and genome evolution. Whereas point mutation rates vary with genomic location and local DNA features, the role of genome architecture in the formation and evolutionary dynamics of CNVs is poorly understood. Previously, we found the GAP1 gene in Saccharomyces cerevisiae undergoes frequent amplification and selection in glutamine-limitation. The gene is flanked by two long terminal repeats (LTRs) and proximate to an origin of DNA replication (autonomously replicating sequence, ARS), which likely promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we evolved engineered strains lacking either the adjacent LTRs, ARS, or all elements in glutamine-limited chemostats. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. Removal of local DNA elements significantly impacts the fitness effect of GAP1 CNVs and the rate of adaptation. In 177 CNV lineages, across all four strains, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, distal ones mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination can mediate gene amplification following de novo retrotransposon events. Our study reveals that template switching during DNA replication is a prevalent source of adaptive CNVs.

    1. Evolutionary Biology
    Mattias Siljestam, Claus Rueffler
    Research Article Updated

    The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.