V-ATPase V0a1 promotes Weibel–Palade body biogenesis through the regulation of membrane fission

  1. Yasuo Yamazaki  Is a corresponding author
  2. Yuka Eura
  3. Koichi Kokame  Is a corresponding author
  1. National Cerebral and Cardiovascular Center, Japan

Abstract

Membrane fission, the division of a membrane-bound structure into two discrete compartments, is essential for diverse cellular events, such as endocytosis and vesicle/granule biogenesis; however, the process remains unclear. The hemostatic protein von Willebrand factor is produced in vascular endothelial cells and packaged into specialized secretory granules, Weibel-Palade bodies (WPBs) at the trans-Golgi network (TGN). Here, we reported that V0a1, a V-ATPase component, is required for the membrane fission of WPBs. We identified two V0a isoforms in distinct populations of WPBs in cultured endothelial cells, V0a1 and V0a2, on mature and nascent WPBs, respectively. Although WPB buds were formed, WPBs could not separate from the TGN in the absence of V0a1. Screening using dominant-negative forms of known membrane fission regulators revealed protein kinase D (PKD) as an essential factor in biogenesis of WPBs. Further, we showed that the induction of wild-type PKDs in V0a1-depleted cells does not support the segregation of WPBs from the TGN; suggesting a primary role of V0a1 in the membrane fission of WPBs. The identification of V0a1 as a new membrane fission regulator should facilitate the understanding of molecular events that enable membrane fission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all blots and graphs shown in the manuscript.

Article and author information

Author details

  1. Yasuo Yamazaki

    Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
    For correspondence
    yasuo.yamazaki@ncvc.go.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5297-9837
  2. Yuka Eura

    Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5784-6339
  3. Koichi Kokame

    Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
    For correspondence
    kame@ncvc.go.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9654-6299

Funding

Japan Society for the Promotion of Science (17K07401)

  • Yasuo Yamazaki

Japan Society for the Promotion of Science (17K07358)

  • Koichi Kokame

Ministry of Health, Labour and Welfare (JPMH20FC1024)

  • Koichi Kokame

SENSHIN Medical Research Foundation

  • Yasuo Yamazaki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University School of Medicine, United States

Publication history

  1. Received: June 22, 2021
  2. Accepted: December 13, 2021
  3. Accepted Manuscript published: December 14, 2021 (version 1)
  4. Version of Record published: December 30, 2021 (version 2)

Copyright

© 2021, Yamazaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 845
    Page views
  • 180
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasuo Yamazaki
  2. Yuka Eura
  3. Koichi Kokame
(2021)
V-ATPase V0a1 promotes Weibel–Palade body biogenesis through the regulation of membrane fission
eLife 10:e71526.
https://doi.org/10.7554/eLife.71526

Further reading

    1. Cell Biology
    2. Neuroscience
    Sotaro Ichinose, Yoshihiro Susuki ... Hirohide Iwasaki
    Research Article

    Neurons form dense neural circuits by connecting to each other via synapses and exchange information through synaptic receptors to sustain brain activities. Excitatory postsynapses form and mature on spines composed predominantly of actin, while inhibitory synapses are formed directly on the shafts of dendrites where both actin and microtubules (MTs) are present. Thus, it is the accumulation of specific proteins that characterizes inhibitory synapses. In this study, we explored the mechanisms that enable efficient protein accumulation at inhibitory postsynapse. We found that some inhibitory synapses function to recruit the plus end of MTs. One of the synaptic organizers, Teneurin-2 (TEN2), tends to localize to such MT-rich synapses and recruits MTs to inhibitory postsynapses via interaction with MT plus-end tracking proteins EBs. This recruitment mechanism provides a platform for the exocytosis of GABAA receptors. These regulatory mechanisms could lead to a better understanding of the pathogenesis of disorders such as schizophrenia and autism, which are caused by excitatory/inhibitory (E/I) imbalances during synaptogenesis.

    1. Cell Biology
    Qin Zou, Rong Yuan ... Yanzhi Jiang
    Research Article

    Different anatomical locations of the body skin show differences in their gene expression patterns depending on different origins, and the inherent heterogeneous information can be maintained in adults. However, highly resolvable cellular specialization is less well characterized in different anatomical regions of the skin. Pig is regarded as an excellent model animal for human skin research in view of its similar physiology to human. In this study, single-cell RNA sequencing was performed on pig skin tissues from six different anatomical regions of Chenghua (CH) pigs, with a superior skin thickness trait, and the back site of large white (LW) pigs. We obtained 233,715 cells, representing seven cell types, among which we primarily characterized the heterogeneity of the top three cell types, including smooth muscle cells (SMCs), endothelial cells (ECs), and fibroblasts (FBs). Then, we further identified several subtypes of SMCs, ECs, and FBs, and discovered the expression patterns of site-specific genes involved in some important pathways such as the immune response and extracellular matrix (ECM) synthesis in different anatomical regions. By comparing differentially expressed genes of skin FBs among different anatomical regions, we considered TNN, COL11A1, and INHBA as candidate genes for facilitating ECM accumulation. These findings of heterogeneity in the main skin cell types from different anatomical sites will contribute to a better understanding of inherent skin information and place the potential focus on skin generation, transmission, and transplantation, paving the foundation for human skin priming.