V-ATPase V0a1 promotes Weibel–Palade body biogenesis through the regulation of membrane fission

  1. Yasuo Yamazaki  Is a corresponding author
  2. Yuka Eura
  3. Koichi Kokame  Is a corresponding author
  1. National Cerebral and Cardiovascular Center, Japan

Abstract

Membrane fission, the division of a membrane-bound structure into two discrete compartments, is essential for diverse cellular events, such as endocytosis and vesicle/granule biogenesis; however, the process remains unclear. The hemostatic protein von Willebrand factor is produced in vascular endothelial cells and packaged into specialized secretory granules, Weibel-Palade bodies (WPBs) at the trans-Golgi network (TGN). Here, we reported that V0a1, a V-ATPase component, is required for the membrane fission of WPBs. We identified two V0a isoforms in distinct populations of WPBs in cultured endothelial cells, V0a1 and V0a2, on mature and nascent WPBs, respectively. Although WPB buds were formed, WPBs could not separate from the TGN in the absence of V0a1. Screening using dominant-negative forms of known membrane fission regulators revealed protein kinase D (PKD) as an essential factor in biogenesis of WPBs. Further, we showed that the induction of wild-type PKDs in V0a1-depleted cells does not support the segregation of WPBs from the TGN; suggesting a primary role of V0a1 in the membrane fission of WPBs. The identification of V0a1 as a new membrane fission regulator should facilitate the understanding of molecular events that enable membrane fission.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all blots and graphs shown in the manuscript.

Article and author information

Author details

  1. Yasuo Yamazaki

    Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
    For correspondence
    yasuo.yamazaki@ncvc.go.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5297-9837
  2. Yuka Eura

    Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5784-6339
  3. Koichi Kokame

    Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, Japan
    For correspondence
    kame@ncvc.go.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9654-6299

Funding

Japan Society for the Promotion of Science (17K07401)

  • Yasuo Yamazaki

Japan Society for the Promotion of Science (17K07358)

  • Koichi Kokame

Ministry of Health, Labour and Welfare (JPMH20FC1024)

  • Koichi Kokame

SENSHIN Medical Research Foundation

  • Yasuo Yamazaki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Yamazaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,248
    views
  • 221
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasuo Yamazaki
  2. Yuka Eura
  3. Koichi Kokame
(2021)
V-ATPase V0a1 promotes Weibel–Palade body biogenesis through the regulation of membrane fission
eLife 10:e71526.
https://doi.org/10.7554/eLife.71526

Share this article

https://doi.org/10.7554/eLife.71526

Further reading

    1. Cancer Biology
    2. Cell Biology
    Alexandra Urbancokova, Terezie Hornofova ... Pavla Vasicova
    Research Article

    PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.

    1. Cell Biology
    Surya Bansi Singh, Shatruhan Singh Rajput ... Deepa Subramanyam
    Research Article

    Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington's disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration-associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.