Abstract

The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single cell RNA sequencing, histology and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.

Data availability

Sequencing data have been deposited in GEO under accession code GSE184879

The following data sets were generated

Article and author information

Author details

  1. Miguel Turrero García

    Harvard Medical School, Boston, United States
    For correspondence
    Miguel_TurreroGarcia@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7294-169X
  2. Sarah K Stegmann

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tiara E Lacey

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher M Reid

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sinisa Hrvatin

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caleb Weinreb

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Manal A Adam

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. M Aurel Nagy

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Corey C Harwell

    Harvard Medical School, Boston, United States
    For correspondence
    Corey_Harwell@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8043-5869

Funding

National Institute of Mental Health (R01MH119156)

  • Corey C Harwell

National Institute of Neurological Disorders and Stroke (R01NS102228)

  • Corey C Harwell

Ellen and Melvin Gordon Center for the Cure of Paralysis (Fellowship)

  • Miguel Turrero García

Boehringer Ingelheim Fonds (MD Fellowship)

  • Sarah K Stegmann

Bill and Melinda Gates Foundation (Millennium Scholarship)

  • Tiara E Lacey

Howard Hughes Medical Institute (Gilliam Fellowship for Advanced Study)

  • Christopher M Reid

Harvard Brain Science Initiative (Seed Grant)

  • Corey C Harwell

Giovanni Armenise-Harvard Foundation (Junior Faculty Award)

  • Corey C Harwell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures conducted in this study followed experimental protocols approved by the Institutional Animal Care and Use Committee of Harvard Medical School (IS961-3 and IS677-3).

Copyright

© 2021, Turrero García et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miguel Turrero García
  2. Sarah K Stegmann
  3. Tiara E Lacey
  4. Christopher M Reid
  5. Sinisa Hrvatin
  6. Caleb Weinreb
  7. Manal A Adam
  8. M Aurel Nagy
  9. Corey C Harwell
(2021)
Transcriptional profiling of sequentially generated septal neuron fates
eLife 10:e71545.
https://doi.org/10.7554/eLife.71545

Share this article

https://doi.org/10.7554/eLife.71545

Further reading

    1. Developmental Biology
    Alexandra V Bruter, Ekaterina A Varlamova ... Victor V Tatarskiy
    Research Article

    CDK8 and CDK19 paralogs are regulatory kinases associated with the transcriptional Mediator complex. We have generated mice with the systemic inducible Cdk8 knockout on the background of Cdk19 constitutive knockout. Cdk8/19 double knockout (iDKO) males, but not single Cdk8 or Cdk19 KO, had an atrophic reproductive system and were infertile. The iDKO males lacked postmeiotic spermatids and spermatocytes after meiosis I pachytene. Testosterone levels were decreased whereas the amounts of the luteinizing hormone were unchanged. Single-cell RNA sequencing showed marked differences in the expression of steroidogenic genes (such as Cyp17a1, Star, and Fads) in Leydig cells concomitant with alterations in Sertoli cells and spermatocytes, and were likely associated with an impaired synthesis of steroids. Star and Fads were also downregulated in cultured Leydig cells after iDKO. The treatment of primary Leydig cell culture with a CDK8/19 inhibitor did not induce the same changes in gene expression as iDKO, and a prolonged treatment of mice with a CDK8/19 inhibitor did not affect the size of testes. iDKO, in contrast to the single knockouts or treatment with a CDK8/19 kinase inhibitor, led to depletion of cyclin C (CCNC), the binding partner of CDK8/19 that has been implicated in CDK8/19-independent functions. This suggests that the observed phenotype was likely mediated through kinase-independent activities of CDK8/19, such as CCNC stabilization.

    1. Developmental Biology
    Thomas A Bos, Elizaveta Polyakova ... Monique RM Jongbloed
    Research Article Updated

    Human autonomic neuronal cell models are emerging as tools for modeling diseases such as cardiac arrhythmias. In this systematic review, we compared 33 articles applying 14 different protocols to generate sympathetic neurons and 3 different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half showed evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models that include multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two-thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modeling.