Widespread nociceptive maps in the human neonatal somatosensory cortex

  1. Laura Jones  Is a corresponding author
  2. Madeleine Verriotis
  3. Robert J Cooper
  4. Maria Pureza Laudiano-Dray
  5. Mohammed Rupawala
  6. Judith Meek
  7. Lorenzo Fabrizi
  8. Maria Fitzgerald  Is a corresponding author
  1. University College London, United Kingdom
  2. University College London Hospitals NHS Foundation Trust, United Kingdom

Abstract

Topographic cortical maps are essential for spatial localisation of sensory stimulation and generation of appropriate task-related motor responses. Somatosensation and nociception are finely mapped and aligned in the adult somatosensory (S1) cortex, but in infancy, when pain behaviour is disorganised and poorly directed, nociceptive maps may be less refined. We compared the topographic pattern of S1 activation following noxious (clinically required heel lance) and innocuous (touch) mechanical stimulation of the same skin region in newborn infants (n=32) using multi-optode functional near-infrared spectroscopy (fNIRS). Within S1 cortex, touch and lance of the heel elicit localised, partially overlapping increases in oxygenated haemoglobin concentration (D[HbO]), but while touch activation was restricted to the heel area, lance activation extended into cortical hand regions. The data reveals a widespread cortical nociceptive map in infant S1, consistent with their poorly directed pain behaviour.

Data availability

All raw data files are open access and are available to download from Figshare (https://doi.org/10.6084/m9.figshare.13252388.v2).

The following data sets were generated

Article and author information

Author details

  1. Laura Jones

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    For correspondence
    laura.a.jones@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5755-4977
  2. Madeleine Verriotis

    Department of Developmental Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3019-0370
  3. Robert J Cooper

    Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Pureza Laudiano-Dray

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Mohammed Rupawala

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Judith Meek

    Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals NHS Foundation Trust, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Lorenzo Fabrizi

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9582-0727
  8. Maria Fitzgerald

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    For correspondence
    m.fitzgerald@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4188-0123

Funding

Medical Research Council (MR/M006468/1)

  • Judith Meek
  • Lorenzo Fabrizi
  • Maria Fitzgerald

Medical Research Council (MR/L019248/1)

  • Lorenzo Fabrizi

Engineering and Physical Sciences Research Council (EP/N025946/1)

  • Robert J Cooper

Medical Research Council (MR/S003207/1)

  • Judith Meek
  • Lorenzo Fabrizi
  • Maria Fitzgerald

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval for this study was given by the NHS Health Research Authority (London - Surrey Borders) and the study conformed to the standards set by the Declaration of Helsinki. Informed written parental consent was obtained before each study (REC no: 11/LO/0350; NIHR Portfolio Study ID: 12036). Separate media consent was obtained from the parent to use a photo of their child in academic publications (Figure 4a).

Reviewing Editor

  1. Chris I Baker, National Institute of Mental Health, National Institutes of Health, United States

Version history

  1. Received: June 25, 2021
  2. Preprint posted: July 30, 2021 (view preprint)
  3. Accepted: April 22, 2022
  4. Accepted Manuscript published: April 22, 2022 (version 1)
  5. Version of Record published: May 10, 2022 (version 2)

Copyright

© 2022, Jones et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 902
    Page views
  • 222
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Jones
  2. Madeleine Verriotis
  3. Robert J Cooper
  4. Maria Pureza Laudiano-Dray
  5. Mohammed Rupawala
  6. Judith Meek
  7. Lorenzo Fabrizi
  8. Maria Fitzgerald
(2022)
Widespread nociceptive maps in the human neonatal somatosensory cortex
eLife 11:e71655.
https://doi.org/10.7554/eLife.71655

Share this article

https://doi.org/10.7554/eLife.71655

Further reading

    1. Neuroscience
    E Nicholas Petersen, Mahmud Arif Pavel ... Scott B Hansen
    Research Article

    Rapid conversion of force into a biological signal enables living cells to respond to mechanical forces in their environment. The force is believed to initially affect the plasma membrane and then alter the behavior of membrane proteins. Phospholipase D2 (PLD2) is a mechanosensitive enzyme that is regulated by a structured membrane-lipid site comprised of cholesterol and saturated ganglioside (GM1). Here we show stretch activation of TWIK-related K+ channel (TREK-1) is mechanically evoked by PLD2 and spatial patterning involving ordered GM1 and 4,5-bisphosphate (PIP2) clusters in mammalian cells. First, mechanical force deforms the ordered lipids, which disrupts the interaction of PLD2 with the GM1 lipids and allows a complex of TREK-1 and PLD2 to associate with PIP2 clusters. The association with PIP2 activates the enzyme, which produces the second messenger phosphatidic acid (PA) that gates the channel. Co-expression of catalytically inactive PLD2 inhibits TREK-1 stretch currents in a biological membrane. Cellular uptake of cholesterol inhibits TREK-1 currents in culture and depletion of cholesterol from astrocytes releases TREK-1 from GM1 lipids in mouse brain. Depletion of the PLD2 ortholog in flies results in hypersensitivity to mechanical force. We conclude PLD2 mechanosensitivity combines with TREK-1 ion permeability to elicit a mechanically evoked response.

    1. Developmental Biology
    2. Neuroscience
    Athina Keramidioti, Sandra Schneid ... Charles N David
    Research Article

    The Hydra nervous system is the paradigm of a ‘simple nerve net’. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.