Abstract

The sharing of research data is essential to ensure reproducibility and maximize the impact of public investments in scientific research. Here we describe OpenNeuro, a BRAIN Initiative data archive that provides the ability to openly share data from a broad range of brain imaging data types following the FAIR principles for data sharing. We highlight the importance of the Brain Imaging Data Structure (BIDS) standard for enabling effective curation, sharing, and reuse of data. The archive presently shares more than 600 datasets including data from more than 20,000 participants, comprising multiple species and measurement modalities and a broad range of phenotypes. The impact of the shared data is evident in a growing number of published reuses, currently totalling more than 150 publications. We conclude by describing plans for future development and integration with other ongoing open science efforts.

Data availability

The OpenNeuro data repository is accessible at http://openneuro.org. The derived data used to generate the analyses and figures reported here are available at https://doi.org/10.5281/zenodo.5559041

Article and author information

Author details

  1. Christopher J Markiewicz

    Stanford University, Stanford, CA, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6533-164X
  2. Krzysztof J Gorgolewski

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3321-7583
  3. Franklin Feingold

    Stanford University, Stanford, CA, United States
    Competing interests
    No competing interests declared.
  4. Ross Blair

    Stanford University, Stanford, CA, United States
    Competing interests
    No competing interests declared.
  5. Yaroslav O Halchenko

    Dartmouth University, Hanover, NH, United States
    Competing interests
    No competing interests declared.
  6. Eric Miller

    Squishymedia, Portland, OR, United States
    Competing interests
    Eric Miller, EM is owner of Squishymedia which is funded to perform software development work on OpenNeuro..
  7. Nell Hardcastle

    Squishymedia, Portland, OR, United States
    Competing interests
    Nell Hardcastle, NH is an employee of Squishymedia which is funded to perform software development work on OpenNeuro..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3837-0707
  8. Joe Wexler

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  9. Oscar Esteban

    Stanford University, Stanford, CA, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8435-6191
  10. Mathias Goncavles

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  11. Anita Jwa

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  12. Russell Poldrack

    Department of Psychology, Stanford University, Stanford, United States
    For correspondence
    russpold@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6755-0259

Funding

National Institute of Mental Health (R24MH117179)

  • Russell Poldrack

National Institute of Mental Health (R24MH114705)

  • Russell Poldrack

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Markiewicz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,148
    views
  • 507
    downloads
  • 164
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher J Markiewicz
  2. Krzysztof J Gorgolewski
  3. Franklin Feingold
  4. Ross Blair
  5. Yaroslav O Halchenko
  6. Eric Miller
  7. Nell Hardcastle
  8. Joe Wexler
  9. Oscar Esteban
  10. Mathias Goncavles
  11. Anita Jwa
  12. Russell Poldrack
(2021)
The OpenNeuro resource for sharing of neuroscience data
eLife 10:e71774.
https://doi.org/10.7554/eLife.71774

Share this article

https://doi.org/10.7554/eLife.71774

Further reading

    1. Neuroscience
    Xinlin Hou, Peng Zhang ... Dandan Zhang
    Research Article

    Emotional responsiveness in neonates, particularly their ability to discern vocal emotions, plays an evolutionarily adaptive role in human communication and adaptive behaviors. The developmental trajectory of emotional sensitivity in neonates is crucial for understanding the foundations of early social-emotional functioning. However, the precise onset of this sensitivity and its relationship with gestational age (GA) remain subjects of investigation. In a study involving 120 healthy neonates categorized into six groups based on their GA (ranging from 35 and 40 weeks), we explored their emotional responses to vocal stimuli. These stimuli encompassed disyllables with happy and neutral prosodies, alongside acoustically matched nonvocal control sounds. The assessments occurred during natural sleep states using the odd-ball paradigm and event-related potentials. The results reveal a distinct developmental change at 37 weeks GA, marking the point at which neonates exhibit heightened perceptual acuity for emotional vocal expressions. This newfound ability is substantiated by the presence of the mismatch response, akin to an initial form of adult mismatch negativity, elicited in response to positive emotional vocal prosody. Notably, this perceptual shift’s specificity becomes evident when no such discrimination is observed in acoustically matched control sounds. Neonates born before 37 weeks GA do not display this level of discrimination ability. This developmental change has important implications for our understanding of early social-emotional development, highlighting the role of gestational age in shaping early perceptual abilities. Moreover, while these findings introduce the potential for a valuable screening tool for conditions like autism, characterized by atypical social-emotional functions, it is important to note that the current data are not yet robust enough to fully support this application. This study makes a substantial contribution to the broader field of developmental neuroscience and holds promise for future research on early intervention in neurodevelopmental disorders.

    1. Neuroscience
    Luis Alberto Bezares Calderón, Réza Shahidi, Gáspár Jékely
    Research Article

    Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid Platynereis dumerilii. Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band. By calcium imaging, we found that brain ciliary photoreceptors showed a graded response to pressure changes. The photoreceptors in animals mutant for ciliary opsin-1 had a smaller sensory compartment and mutant larvae showed diminished pressure responses. The ciliary photoreceptors synaptically connect to the head multiciliary band via serotonergic motoneurons. Genetic inhibition of the serotonergic cells blocked pressure-dependent increases in ciliary beating. We conclude that ciliary photoreceptors function as pressure sensors and activate ciliary beating through serotonergic signalling during barokinesis.