Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3

Abstract

Hippocampal place cells are activated sequentially as an animal explores its environment. These activity sequences are internally recreated ('replayed'), either in the same or reversed order, during bursts of activity (sharp wave-ripples; SWRs) that occur in sleep and awake rest. SWR-associated replay is thought to be critical for the creation and maintenance of long-term memory. In order to identify the cellular and network mechanisms of SWRs and replay, we constructed and simulated a data-driven model of area CA3 of the hippocampus. Our results show that the chain-like structure of recurrent excitatory interactions established during learning not only determines the content of replay, but is essential for the generation of the SWRs as well. We find that bidirectional replay requires the interplay of the experimentally confirmed, temporally symmetric plasticity rule, and cellular adaptation. Our model provides a unifying framework for diverse phenomena involving hippocampal plasticity, representations, and dynamics, and suggests that the structured neural codes induced by learning may have greater influence over cortical network states than previously appreciated.

Data availability

The source code to build, run and analyze our model is publicly available on GitHub: https://github.com/KaliLab/ca3net

Article and author information

Author details

  1. András Ecker

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9635-4169
  2. Bence Bagi

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Eszter Vértes

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Orsolya Steinbach-Németh

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. Maria Rita Karlocai

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Orsolya I Papp

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  7. István Miklós

    Alfréd Rényi Institute of Mathematics, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  8. Norbert Hájos

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  9. Tamás Freund

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  10. Attila I Gulyás

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  11. Szabolcs Káli

    Institute of Experimental Medicine, Budapest, Hungary
    For correspondence
    kali@koki.hu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2740-6057

Funding

Hungarian Scientific Research Fund (K83251)

  • Maria Rita Karlocai
  • Attila I Gulyás
  • Szabolcs Káli

Hungarian Scientific Research Fund (K85659)

  • Orsolya Steinbach-Németh
  • Norbert Hájos

Hungarian Scientific Research Fund (K115441)

  • Attila I Gulyás
  • Szabolcs Káli

Hungarian Brain Research Program (2017-1.2.1-NKP-2017-00002)

  • Norbert Hájos

European Commission (ERC 2011 ADG 294313)

  • Tamás Freund
  • Attila I Gulyás
  • Szabolcs Káli

European Commission (FP7 no. 604102,H2020 no. 720270,no. 785907 (Human Brain Project))

  • Tamás Freund
  • Attila I Gulyás
  • Szabolcs Káli

Hungarian Ministry of Innovation and Technology NRDI Office (Artificial Intelligence National Laboratory)

  • Szabolcs Káli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were approved by the Committee for the Scientific Ethics of Animal Research (22.1/4027/003/2009) and were performed according to the guidelines of the institutional ethical code and the Hungarian Act of Animal Care and Experimentation. Experiments were performed in acute brain slices; no animal suffering was involved as mice were deeply anaesthetized with isoflurane and decapitated before slice preparation. Data recorded in the context of other studies were used for model fitting, and therefore no additional animals were used for the purpose of this study.

Copyright

© 2022, Ecker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,138
    views
  • 553
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. András Ecker
  2. Bence Bagi
  3. Eszter Vértes
  4. Orsolya Steinbach-Németh
  5. Maria Rita Karlocai
  6. Orsolya I Papp
  7. István Miklós
  8. Norbert Hájos
  9. Tamás Freund
  10. Attila I Gulyás
  11. Szabolcs Káli
(2022)
Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3
eLife 11:e71850.
https://doi.org/10.7554/eLife.71850

Share this article

https://doi.org/10.7554/eLife.71850

Further reading

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Johanna KS Tiemann, Magdalena Szczuka ... Pierre Poulain
    Research Article

    The rise of open science and the absence of a global dedicated data repository for molecular dynamics (MD) simulations has led to the accumulation of MD files in generalist data repositories, constituting the dark matter of MD — data that is technically accessible, but neither indexed, curated, or easily searchable. Leveraging an original search strategy, we found and indexed about 250,000 files and 2000 datasets from Zenodo, Figshare and Open Science Framework. With a focus on files produced by the Gromacs MD software, we illustrate the potential offered by the mining of publicly available MD data. We identified systems with specific molecular composition and were able to characterize essential parameters of MD simulation such as temperature and simulation length, and could identify model resolution, such as all-atom and coarse-grain. Based on this analysis, we inferred metadata to propose a search engine prototype to explore the MD data. To continue in this direction, we call on the community to pursue the effort of sharing MD data, and to report and standardize metadata to reuse this valuable matter.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions - the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS) - while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal's choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally-inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.