Simultaneous brain, brainstem and spinal cord pharmacological-fMRI reveals involvement of an endogenous opioid network in attentional analgesia

  1. Valeria Oliva
  2. Ron Hartley-Davies
  3. Rosalyn Moran
  4. Anthony E Pickering  Is a corresponding author
  5. Jonathan CW Brooks
  1. University of California, San Diego, United States
  2. University of Bristol, United Kingdom
  3. King's College London, United Kingdom
  4. University of East Anglia, United Kingdom

Abstract

Pain perception is decreased by shifting attentional focus away from a threatening event. This attentional analgesia engages parallel descending control pathways from anterior cingulate (ACC) to locus coeruleus, and ACC to periaqueductal grey (PAG) - rostral ventromedial medulla (RVM), indicating possible roles for noradrenergic or opioidergic neuromodulators. To determine which pathway modulates nociceptive activity in humans we used simultaneous whole brain-spinal cord pharmacological-fMRI (N=39) across three sessions. Noxious thermal forearm stimulation generated somatotopic-activation of dorsal horn (DH) whose activity correlated with pain report and mirrored attentional pain modulation. Activity in an adjacent cluster reported the interaction between task and noxious stimulus. Effective connectivity analysis revealed that ACC interacts with PAG and RVM to modulate spinal cord activity. Blocking endogenous opioids with Naltrexone impairs attentional analgesia and disrupts RVM-spinal and ACC-PAG connectivity. Noradrenergic augmentation with Reboxetine did not alter attentional analgesia. Cognitive pain modulation involves opioidergic ACC-PAG-RVM descending control which suppresses spinal nociceptive activity.

Data availability

ource data is provided for Figure 2 (A, C, D, E, and supplementary 1, 2 and 3) and Figure 4 (B) and Figure 5. Un-thresholded statistical maps have been shared in Open Science Framework and are available at the following link: https://osf.io/dtpr6/ and the brainstem regional masks of PAG, LC, RVM are available from https://osf.io/xqvb6/

Article and author information

Author details

  1. Valeria Oliva

    Department of Anesthesiology, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Ron Hartley-Davies

    School of Psychological Science, University of Bristol, Bristol, United Kingdom
    Competing interests
    No competing interests declared.
  3. Rosalyn Moran

    Department of Neuroimaging, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0227-6548
  4. Anthony E Pickering

    School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
    For correspondence
    tony.pickering@bristol.ac.uk
    Competing interests
    Anthony E Pickering, declares that he has unrelated research funding for a collaboration with Eli Lilly and is onthe advisory board for Lateral Pharma for an unrelated study..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0345-0456
  5. Jonathan CW Brooks

    University of East Anglia, Norwich, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3335-6209

Funding

Wellcome Trust (203963/Z/16/Z)

  • Valeria Oliva

Wellcome Trust (088373/Z/09/A)

  • Anthony E Pickering

Medical Research Council

  • Jonathan CW Brooks

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the University of Bristol Faculty of Science Human Research Ethics Committee (reference 23111759828). All participants were given a participant information sheet. In the first screening/calibration visit, the participants were briefed on the experiment and gave written informed consent.

Copyright

© 2022, Oliva et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,380
    views
  • 257
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valeria Oliva
  2. Ron Hartley-Davies
  3. Rosalyn Moran
  4. Anthony E Pickering
  5. Jonathan CW Brooks
(2022)
Simultaneous brain, brainstem and spinal cord pharmacological-fMRI reveals involvement of an endogenous opioid network in attentional analgesia
eLife 11:e71877.
https://doi.org/10.7554/eLife.71877

Share this article

https://doi.org/10.7554/eLife.71877

Further reading

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.