De novo synthesized polyunsaturated fatty acids operate as both host immunomodulators and nutrients for Mycobacterium tuberculosis

  1. Thomas Laval
  2. Laura Pedró-Cos
  3. Wladimir Malaga
  4. Laure Guenin-Macé
  5. Alexandre Pawlik
  6. Véronique Mayau
  7. Hanane Yahia-Cherbal
  8. Océane Delos
  9. Wafa Frigui
  10. Justine Bertrand-Michel
  11. Christophe Guilhot
  12. Caroline Demangel  Is a corresponding author
  1. Institut Pasteur, France
  2. Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR5089, France
  3. IFR 150, INSERM, France

Abstract

Successful control of Mycobacterium tuberculosis (Mtb) infection by macrophages relies on immunometabolic reprogramming, where the role of fatty acids (FAs) remains poorly understood. Recent studies unraveled Mtb's capacity to acquire saturated and monounsaturated FAs via the Mce1 importer. However upon activation, macrophages produce polyunsaturated FAs (PUFAs), mammal-specific FAs mediating the generation of immunomodulatory eicosanoids. Here, we asked how Mtb modulates de novo synthesis of PUFAs in primary mouse macrophages and whether this benefits host or pathogen. Quantitative lipidomics revealed that Mtb infection selectively activates the biosynthesis of w6 PUFAs upstream of the eicosanoid precursor arachidonic acid (AA), via transcriptional activation of Fads2. Inhibiting FADS2 in infected macrophages impaired their inflammatory and antimicrobial responses but had no effect on Mtb growth in mice. Using a click-chemistry approach, we found that Mtb efficiently imports w6 PUFAs via Mce1 in axenic culture, including AA. Further, Mtb preferentially internalized AA over all other FAs within infected macrophages, by mechanisms partially depending on Mce1 and supporting intracellular persistence. Notably, IFNγ repressed de novo synthesis of AA by infected mouse macrophages and restricted AA import by intracellular Mtb. Together, these findings identify AA as a major FA substrate for intracellular Mtb, whose mobilization by innate immune responses is opportunistically hijacked by the pathogen and downregulated by IFNγ.

Data availability

All data analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Thomas Laval

    Immunobiology of Infection Unit, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9359-2783
  2. Laura Pedró-Cos

    Immunobiology of Infection Unit, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Wladimir Malaga

    Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR5089, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Laure Guenin-Macé

    Immunobiology of Infection Unit, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexandre Pawlik

    Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5680-576X
  6. Véronique Mayau

    Immunobiology of Infection Unit, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Hanane Yahia-Cherbal

    Immunoregulation Unit, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Océane Delos

    IFR 150, INSERM, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Wafa Frigui

    Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Justine Bertrand-Michel

    IFR 150, INSERM, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Christophe Guilhot

    Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS UMR5089, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Caroline Demangel

    Immunobiology of Infection Unit, Institut Pasteur, Paris, France
    For correspondence
    demangel@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7848-586X

Funding

The authors declare that there was no external funding for this work.

Ethics

Animal experimentation: All animal experiments were performed in agreement with European and French guidelines (Directive 86/609/CEE and Decree 87- 848 of 19 October 1987). The study received the approval by the Institut Pasteur Safety Committee (Protocol 11.245) and the ethical approval by the local ethical committee "Comité d'Ethique en Experimentation Animale N{degree sign} 89 (CETEA)" (CETEA 200037 / APAFiS #27688).

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Publication history

  1. Received: July 5, 2021
  2. Accepted: December 24, 2021
  3. Accepted Manuscript published: December 24, 2021 (version 1)
  4. Version of Record published: January 11, 2022 (version 2)

Copyright

© 2021, Laval et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,048
    Page views
  • 137
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas Laval
  2. Laura Pedró-Cos
  3. Wladimir Malaga
  4. Laure Guenin-Macé
  5. Alexandre Pawlik
  6. Véronique Mayau
  7. Hanane Yahia-Cherbal
  8. Océane Delos
  9. Wafa Frigui
  10. Justine Bertrand-Michel
  11. Christophe Guilhot
  12. Caroline Demangel
(2021)
De novo synthesized polyunsaturated fatty acids operate as both host immunomodulators and nutrients for Mycobacterium tuberculosis
eLife 10:e71946.
https://doi.org/10.7554/eLife.71946

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Nathanael A Caveney et al.
    Short Report

    Interleukin 27 (IL-27) is a heterodimeric cytokine that functions to constrain T cell-mediated inflammation and plays an important role in immune homeostasis. Binding of IL-27 to cell surface receptors IL-27Rα and gp130 results in activation of receptor-associated Janus Kinases and nuclear translocation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT3 transcription factors. Despite the emerging therapeutic importance of this cytokine axis in cancer and autoimmunity, a molecular blueprint of the IL-27 receptor signaling complex, and its relation to other gp130/IL-12 family cytokines, is currently unclear. We used cryogenic-electron microscopy to determine the quaternary structure of IL-27, composed of p28 and Ebi3 subunits, bound to receptors, IL-27Rα and gp130. The resulting 3.47 Å resolution structure revealed a three-site assembly mechanism nucleated by the central p28 subunit of the cytokine. The overall topology and molecular details of this binding are reminiscent of IL-6 but distinct from related heterodimeric cytokines IL-12 and IL-23. These results indicate distinct receptor assembly mechanisms used by heterodimeric cytokines with important consequences for targeted agonism and antagonism of IL-27 signaling.

    1. Developmental Biology
    2. Immunology and Inflammation
    David J Turner et al.
    Short Report Updated

    To identify roles of RNA binding proteins (RBPs) in the differentiation or survival of antibody secreting plasma cells we performed a CRISPR/Cas9 knockout screen of 1213 mouse RBPs for their ability to affect proliferation and/or survival, and the abundance of differentiated CD138 + cells in vitro. We validated the binding partners CSDE1 and STRAP as well as the m6A binding protein YTHDF2 as promoting the accumulation of CD138 + cells in vitro. We validated the EIF3 subunits EIF3K and EIF3L and components of the CCR4-NOT complex as inhibitors of CD138 + cell accumulation in vitro. In chimeric mouse models YTHDF2-deficient plasma cells failed to accumulate.