Structure of mycobacterial CIII2CIV2 respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203)

  1. David J Yanofsky
  2. Justin M Di Trani
  3. Sylwia Krol
  4. Rana Abdelaziz
  5. Stephanie A Bueler
  6. Peter Imming  Is a corresponding author
  7. Peter Brzezinski  Is a corresponding author
  8. John L Rubinstein  Is a corresponding author
  1. The Hospital for Sick Children, Canada
  2. Stockholm University, Sweden
  3. Martin-Luther-Universitaet, Germany
  4. Stockholm university, Sweden

Abstract

The imidazopyridine telacebec, also known as Q203, is one of only a few new classes of compounds in more than fifty years with demonstrated antituberculosis activity in humans. Telacebec inhibits the mycobacterial respiratory supercomplex composed of complexes III and IV (CIII2CIV2). In mycobacterial electron transport chains, CIII2CIV2 replaces canonical CIII and CIV, transferring electrons from the intermediate carrier menaquinol to the final acceptor, molecular oxygen, while simultaneously transferring protons across the inner membrane to power ATP synthesis. We show that telacebec inhibits the menaquinol:oxygen oxidoreductase activity of purified Mycobacterium smegmatis CIII2CIV2 at concentrations similar to those needed to inhibit electron transfer in mycobacterial membranes and Mycobacterium tuberculosis growth in culture. We then used electron cryomicroscopy (cryoEM) to determine structures of CIII2CIV2 both in the presence and absence of telacebec. The structures suggest that telacebec prevents menaquinol oxidation by blocking two different menaquinol binding modes to prevent CIII2CIV2 activity.

Data availability

Data deposition: all electron cryomicroscopy maps described in this article have been deposited in the Electron Microscopy Data Bank (EMDB) (accession numbers EMD-24455 to EMD-24457) and atomic models have been deposited in the Protein Database (PDB) (accession numbers 7RH5 to 7RH7).

Article and author information

Author details

  1. David J Yanofsky

    The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Justin M Di Trani

    The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Sylwia Krol

    Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Rana Abdelaziz

    Pharmaceutical Chemistry, Martin-Luther-Universitaet, Halle (Saale), Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9581-604X
  5. Stephanie A Bueler

    The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Imming

    Martin-Luther-Universitaet, Halle-Wittenberg, Germany
    For correspondence
    peter.imming@pharmazie.uni-halle.de
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Brzezinski

    Biochemistry and Biophysics, Stockholm university, Stockholm, Sweden
    For correspondence
    peterb@dbb.su.se
    Competing interests
    The authors declare that no competing interests exist.
  8. John L Rubinstein

    The Hospital for Sick Children, Toronto, Canada
    For correspondence
    john.rubinstein@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0566-2209

Funding

Canadian Institutes of Health Research (PJT162186)

  • John L Rubinstein

The Alice and Knut Wallenberg Foundation (2019.0043)

  • Peter Brzezinski

Swedish Research Council (2018-04619)

  • Peter Brzezinski

Canadian Institutes of Health Research (PGS-M)

  • David J Yanofsky

Canadian Institutes of Health Research (PDF)

  • Justin M Di Trani

Canada Research Chairs

  • John L Rubinstein

Canada Foundation for Innovation

  • John L Rubinstein

Ontario Research Foundation

  • John L Rubinstein

University of Toronto

  • David J Yanofsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Yanofsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,691
    views
  • 270
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David J Yanofsky
  2. Justin M Di Trani
  3. Sylwia Krol
  4. Rana Abdelaziz
  5. Stephanie A Bueler
  6. Peter Imming
  7. Peter Brzezinski
  8. John L Rubinstein
(2021)
Structure of mycobacterial CIII2CIV2 respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203)
eLife 10:e71959.
https://doi.org/10.7554/eLife.71959

Share this article

https://doi.org/10.7554/eLife.71959

Further reading

    1. Structural Biology and Molecular Biophysics
    Firdousi Parvez, Devika Sangpal ... Jeetender Chugh
    Research Article

    Trans-activation response (TAR) RNA-binding protein (TRBP) has emerged as a key player in the RNA interference pathway, wherein it binds to different pre-microRNAs (miRNAs) and small interfering RNAs (siRNAs), each varying in sequence and/or structure. We hypothesize that TRBP displays dynamic adaptability to accommodate heterogeneity in target RNA structures. Thus, it is crucial to ascertain the role of intrinsic and RNA-induced protein dynamics in RNA recognition and binding. We have previously elucidated the role of intrinsic and RNA-induced conformational exchange in the double-stranded RNA-binding domain 1 (dsRBD1) of TRBP in shape-dependent RNA recognition. The current study delves into the intrinsic and RNA-induced conformational dynamics of the TRBP-dsRBD2 and then compares it with the dsRBD1 study carried out previously. Remarkably, the two domains exhibit differential binding affinity to a 12-bp dsRNA owing to the presence of critical residues and structural plasticity. Furthermore, we report that dsRBD2 depicts constrained conformational plasticity when compared to dsRBD1. Although, in the presence of RNA, dsRBD2 undergoes induced conformational exchange within the designated RNA-binding regions and other residues, the amplitude of the motions remains modest when compared to those observed in dsRBD1. We propose a dynamics-driven model of the two tandem domains of TRBP, substantiating their contributions to the versatility of dsRNA recognition and binding.

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article Updated

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.