Transgenic quails reveal dynamic TCF/β-catenin signaling during avian embryonic development

  1. Hila Barzilai-Tutsch
  2. Valerie Morin
  3. Gauthier Toulouse
  4. Oleksandr Chernyavskiy
  5. Stephen Firth
  6. Christophe Marcelle  Is a corresponding author
  7. Olivier Serralbo  Is a corresponding author
  1. Claude Bernard University Lyon 1, France
  2. Monash University, Australia
  3. CSIRO Health and Biosecurity, Australia

Abstract

The Wnt/bβ-catenin signaling pathway is highly conserved throughout evolution, playing crucial roles in several developmental and pathological processes. Wnt ligands can act at a considerable distance from their sources and it is therefore necessary to examine not only the Wnt-producing but also the Wnt-receiving cells and tissues to fully appreciate the many functions of this pathway. To monitor Wnt activity, multiple tools have been designed which consist of multimerized Wnt signaling response elements (TCF/LEF binding sites) driving the expression of fluorescent reporter proteins (e.g. GFP, RFP) or of LacZ. The high stability of those reporters leads to a considerable accumulation in cells activating the pathway, thereby making them easily detectable. However, this makes them unsuitable to follow temporal changes of the pathway's activity during dynamic biological events. Even though fluorescent transcriptional reporters can be destabilized to shorten their half-lives, this dramatically reduces signal intensities, particularly when applied in vivo. To alleviate these issues, we developed two transgenic quail lines in which high copy number (12x or 16x) of the TCF/LEF binding sites drive the expression of destabilized GFP variants. Translational enhancer sequences derived from viral mRNAs were used to increase signal intensity and specificity. This resulted in transgenic lines efficient for the characterisation of TCF/β-catenin transcriptional dynamic activities during embryogenesis, including using in vivo imaging. Our analyses demonstrate the use of this transcriptional reporter to unveil novel aspects of Wnt signaling, thus opening new routes of investigation into the role of this pathway during amniote embryonic development.

Data availability

Figure 1 - figure supplement 1-Source Data 1 and Figure 1 - figure supplement 2-Source Data 1 contain the numerical data used to generate the figures

Article and author information

Author details

  1. Hila Barzilai-Tutsch

    NeuroMyoGene Institute (INMG), Claude Bernard University Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Valerie Morin

    NeuroMyoGene Institute (INMG), Claude Bernard University Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Gauthier Toulouse

    NeuroMyoGene Institute (INMG), Claude Bernard University Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Oleksandr Chernyavskiy

    Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen Firth

    Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Christophe Marcelle

    NeuroMyoGene Institute (INMG), Claude Bernard University Lyon 1, LYON, France
    For correspondence
    christophe.marcelle@univ-lyon1.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9612-7609
  7. Olivier Serralbo

    CSIRO Health and Biosecurity, Geelong, Australia
    For correspondence
    olivier.serralbo@csiro.au
    Competing interests
    The authors declare that no competing interests exist.

Funding

No funding has supported this study.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Monash University. All of the animals were handled according to approved institutional animal care and use committee of Monash University (Research Ethics & Compliance numbers: ERM#27128 and ERM#18809)

Copyright

© 2022, Barzilai-Tutsch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,335
    views
  • 281
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hila Barzilai-Tutsch
  2. Valerie Morin
  3. Gauthier Toulouse
  4. Oleksandr Chernyavskiy
  5. Stephen Firth
  6. Christophe Marcelle
  7. Olivier Serralbo
(2022)
Transgenic quails reveal dynamic TCF/β-catenin signaling during avian embryonic development
eLife 11:e72098.
https://doi.org/10.7554/eLife.72098

Share this article

https://doi.org/10.7554/eLife.72098

Further reading

    1. Developmental Biology
    2. Neuroscience
    Changtian Ye, Ryan Ho ... James Q Zheng
    Research Article

    Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.

    1. Developmental Biology
    2. Genetics and Genomics
    Nathan D Harry, Christina Zakas
    Research Article

    New developmental programs can evolve through adaptive changes to gene expression. The annelid Streblospio benedicti has a developmental dimorphism, which provides a unique intraspecific framework for understanding the earliest genetic changes that take place during developmental divergence. Using comparative RNAseq through ontogeny, we find that only a small proportion of genes are differentially expressed at any time, despite major differences in larval development and life history. These genes shift expression profiles across morphs by either turning off any expression in one morph or changing the timing or amount of gene expression. We directly connect the contributions of these mechanisms to differences in developmental processes. We examine F1 offspring – using reciprocal crosses – to determine maternal mRNA inheritance and the regulatory architecture of gene expression. These results highlight the importance of both novel gene expression and heterochronic shifts in developmental evolution, as well as the trans-acting regulatory factors in initiating divergence.