Transgenic quails reveal dynamic TCF/β-catenin signaling during avian embryonic development

  1. Hila Barzilai-Tutsch
  2. Valerie Morin
  3. Gauthier Toulouse
  4. Oleksandr Chernyavskiy
  5. Stephen Firth
  6. Christophe Marcelle  Is a corresponding author
  7. Olivier Serralbo  Is a corresponding author
  1. Claude Bernard University Lyon 1, France
  2. Monash University, Australia
  3. CSIRO Health and Biosecurity, Australia

Abstract

The Wnt/bβ-catenin signaling pathway is highly conserved throughout evolution, playing crucial roles in several developmental and pathological processes. Wnt ligands can act at a considerable distance from their sources and it is therefore necessary to examine not only the Wnt-producing but also the Wnt-receiving cells and tissues to fully appreciate the many functions of this pathway. To monitor Wnt activity, multiple tools have been designed which consist of multimerized Wnt signaling response elements (TCF/LEF binding sites) driving the expression of fluorescent reporter proteins (e.g. GFP, RFP) or of LacZ. The high stability of those reporters leads to a considerable accumulation in cells activating the pathway, thereby making them easily detectable. However, this makes them unsuitable to follow temporal changes of the pathway's activity during dynamic biological events. Even though fluorescent transcriptional reporters can be destabilized to shorten their half-lives, this dramatically reduces signal intensities, particularly when applied in vivo. To alleviate these issues, we developed two transgenic quail lines in which high copy number (12x or 16x) of the TCF/LEF binding sites drive the expression of destabilized GFP variants. Translational enhancer sequences derived from viral mRNAs were used to increase signal intensity and specificity. This resulted in transgenic lines efficient for the characterisation of TCF/β-catenin transcriptional dynamic activities during embryogenesis, including using in vivo imaging. Our analyses demonstrate the use of this transcriptional reporter to unveil novel aspects of Wnt signaling, thus opening new routes of investigation into the role of this pathway during amniote embryonic development.

Data availability

Figure 1 - figure supplement 1-Source Data 1 and Figure 1 - figure supplement 2-Source Data 1 contain the numerical data used to generate the figures

Article and author information

Author details

  1. Hila Barzilai-Tutsch

    NeuroMyoGene Institute (INMG), Claude Bernard University Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Valerie Morin

    NeuroMyoGene Institute (INMG), Claude Bernard University Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Gauthier Toulouse

    NeuroMyoGene Institute (INMG), Claude Bernard University Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Oleksandr Chernyavskiy

    Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen Firth

    Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Christophe Marcelle

    NeuroMyoGene Institute (INMG), Claude Bernard University Lyon 1, LYON, France
    For correspondence
    christophe.marcelle@univ-lyon1.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9612-7609
  7. Olivier Serralbo

    CSIRO Health and Biosecurity, Geelong, Australia
    For correspondence
    olivier.serralbo@csiro.au
    Competing interests
    The authors declare that no competing interests exist.

Funding

No funding has supported this study.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Monash University. All of the animals were handled according to approved institutional animal care and use committee of Monash University (Research Ethics & Compliance numbers: ERM#27128 and ERM#18809)

Version history

  1. Preprint posted: June 11, 2021 (view preprint)
  2. Received: August 4, 2021
  3. Accepted: July 13, 2022
  4. Accepted Manuscript published: July 14, 2022 (version 1)
  5. Version of Record published: August 19, 2022 (version 2)

Copyright

© 2022, Barzilai-Tutsch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,236
    Page views
  • 271
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hila Barzilai-Tutsch
  2. Valerie Morin
  3. Gauthier Toulouse
  4. Oleksandr Chernyavskiy
  5. Stephen Firth
  6. Christophe Marcelle
  7. Olivier Serralbo
(2022)
Transgenic quails reveal dynamic TCF/β-catenin signaling during avian embryonic development
eLife 11:e72098.
https://doi.org/10.7554/eLife.72098

Share this article

https://doi.org/10.7554/eLife.72098

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Zian Liao, Suni Tang ... Martin Matzuk
    Research Article

    Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.