In situ X-ray assisted electron microscopy staining for large biological samples

  1. Sebastian Ströh
  2. Eric W Hammerschmith
  3. David W Tank
  4. H Sebastian Seung
  5. Adrian Andreas Wanner  Is a corresponding author
  1. Princeton University, United States
  2. Paul Scherrer Institute, Switzerland

Abstract

Electron microscopy of biological tissue has recently seen an unprecedented increase in imaging throughput moving the ultrastructural analysis of large tissue blocks such as whole brains into the realm of the feasible. However, homogeneous, high quality electron microscopy staining of large biological samples is still a major challenge. To date, assessing the staining quality in electron microscopy requires running a sample through the entire staining protocol end-to-end, which can take weeks or even months for large samples, rendering protocol optimization for such samples to be inefficient. Here we present an in situ time-lapsed X-ray assisted staining procedure that opens the 'black box' of electron microscopy staining and allows observation of individual staining steps in real time. Using this novel method we measured the accumulation of heavy metals in large tissue samples immersed in different staining solutions. We show that the measured accumulation of osmium in fixed tissue obeys empirically a quadratic dependence between the incubation time and sample size. We found that potassium ferrocyanide, a classic reducing agent for osmium tetroxide, clears the tissue after osmium staining and that the tissue expands in osmium tetroxide solution, but shrinks in potassium ferrocyanide reduced osmium solution. X-ray assisted staining gave access to the in situ staining kinetics and allowed us to develop a diffusion-reaction-advection model that accurately simulates the measured accumulation of osmium in tissue. These are first steps towards in silico staining experiments and simulation-guided optimization of staining protocols for large samples. Hence, X-ray assisted staining will be a useful tool for the development of reliable staining procedures for large samples such as entire brains of mice, monkeys or humans.

Data availability

The code to analyze the X-ray projection images and to model the accumulation of heavy metals can be found on https://github.com/adwanner/XrayAssistedStaining. All X-ray data is available for download on https://www.ebi.ac.uk/empiar/ with dataset ID EMPIAR-10782.

Article and author information

Author details

  1. Sebastian Ströh

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8128-2617
  2. Eric W Hammerschmith

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. David W Tank

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    David W Tank, is an inventor of US Patent Application 16/681,028..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9423-4267
  4. H Sebastian Seung

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    H Sebastian Seung, is an inventor of US Patent Application 16/681,028..
  5. Adrian Andreas Wanner

    Paul Scherrer Institute, Villigen, Switzerland
    For correspondence
    adrian.wanner@psi.ch
    Competing interests
    Adrian Andreas Wanner, is an inventor of US Patent Application 16/681,028..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5864-8577

Funding

CV Starr Fellowship in Neuroscience by the Princeton University

  • Adrian Andreas Wanner

National Institutes of Health (NS104648)

  • David W Tank
  • H Sebastian Seung

National Institutes of Health (1R01EY027036)

  • H Sebastian Seung

National Institutes of Health (U01NS090562)

  • H Sebastian Seung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal use procedures were approved by the Princeton University Institutional Animal Care and Use Committee (protocol number 2000) and carried out in accordance with National Institutes of Health standards (AAALAC International Institutional Number: Unit #1001, PHS assurance ID D16-00273).

Copyright

© 2022, Ströh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,207
    views
  • 197
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Ströh
  2. Eric W Hammerschmith
  3. David W Tank
  4. H Sebastian Seung
  5. Adrian Andreas Wanner
(2022)
In situ X-ray assisted electron microscopy staining for large biological samples
eLife 11:e72147.
https://doi.org/10.7554/eLife.72147

Share this article

https://doi.org/10.7554/eLife.72147

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.