In situ X-ray assisted electron microscopy staining for large biological samples

  1. Sebastian Ströh
  2. Eric W Hammerschmith
  3. David W Tank
  4. H Sebastian Seung
  5. Adrian Andreas Wanner  Is a corresponding author
  1. Princeton University, United States
  2. Paul Scherrer Institute, Switzerland

Abstract

Electron microscopy of biological tissue has recently seen an unprecedented increase in imaging throughput moving the ultrastructural analysis of large tissue blocks such as whole brains into the realm of the feasible. However, homogeneous, high quality electron microscopy staining of large biological samples is still a major challenge. To date, assessing the staining quality in electron microscopy requires running a sample through the entire staining protocol end-to-end, which can take weeks or even months for large samples, rendering protocol optimization for such samples to be inefficient. Here we present an in situ time-lapsed X-ray assisted staining procedure that opens the 'black box' of electron microscopy staining and allows observation of individual staining steps in real time. Using this novel method we measured the accumulation of heavy metals in large tissue samples immersed in different staining solutions. We show that the measured accumulation of osmium in fixed tissue obeys empirically a quadratic dependence between the incubation time and sample size. We found that potassium ferrocyanide, a classic reducing agent for osmium tetroxide, clears the tissue after osmium staining and that the tissue expands in osmium tetroxide solution, but shrinks in potassium ferrocyanide reduced osmium solution. X-ray assisted staining gave access to the in situ staining kinetics and allowed us to develop a diffusion-reaction-advection model that accurately simulates the measured accumulation of osmium in tissue. These are first steps towards in silico staining experiments and simulation-guided optimization of staining protocols for large samples. Hence, X-ray assisted staining will be a useful tool for the development of reliable staining procedures for large samples such as entire brains of mice, monkeys or humans.

Data availability

The code to analyze the X-ray projection images and to model the accumulation of heavy metals can be found on https://github.com/adwanner/XrayAssistedStaining. All X-ray data is available for download on https://www.ebi.ac.uk/empiar/ with dataset ID EMPIAR-10782.

Article and author information

Author details

  1. Sebastian Ströh

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8128-2617
  2. Eric W Hammerschmith

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. David W Tank

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    David W Tank, is an inventor of US Patent Application 16/681,028..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9423-4267
  4. H Sebastian Seung

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    H Sebastian Seung, is an inventor of US Patent Application 16/681,028..
  5. Adrian Andreas Wanner

    Paul Scherrer Institute, Villigen, Switzerland
    For correspondence
    adrian.wanner@psi.ch
    Competing interests
    Adrian Andreas Wanner, is an inventor of US Patent Application 16/681,028..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5864-8577

Funding

CV Starr Fellowship in Neuroscience by the Princeton University

  • Adrian Andreas Wanner

National Institutes of Health (NS104648)

  • David W Tank
  • H Sebastian Seung

National Institutes of Health (1R01EY027036)

  • H Sebastian Seung

National Institutes of Health (U01NS090562)

  • H Sebastian Seung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal use procedures were approved by the Princeton University Institutional Animal Care and Use Committee (protocol number 2000) and carried out in accordance with National Institutes of Health standards (AAALAC International Institutional Number: Unit #1001, PHS assurance ID D16-00273).

Copyright

© 2022, Ströh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,161
    views
  • 190
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Ströh
  2. Eric W Hammerschmith
  3. David W Tank
  4. H Sebastian Seung
  5. Adrian Andreas Wanner
(2022)
In situ X-ray assisted electron microscopy staining for large biological samples
eLife 11:e72147.
https://doi.org/10.7554/eLife.72147

Share this article

https://doi.org/10.7554/eLife.72147

Further reading

    1. Neuroscience
    Hari Teja Kalidindi, Frederic Crevecoeur
    Research Article

    Combining individual actions into sequences is a hallmark of everyday activities. Classical theories propose that the motor system forms a single specification of the sequence as a whole, leading to the coarticulation of the different elements. In contrast, recent neural recordings challenge this idea and suggest independent execution of each element specified separately. Here, we show that separate or coarticulated sequences can result from the same task-dependent controller, without implying different representations in the brain. Simulations show that planning for multiple reaches simultaneously allows separate or coarticulated sequences depending on instructions about intermediate goals. Human experiments in a two-reach sequence task validated this model. Furthermore, in co-articulated sequences, the second goal influenced long-latency stretch responses to external loads applied during the first reach, demonstrating the involvement of the sensorimotor network supporting fast feedback control. Overall, our study establishes a computational framework for sequence production that highlights the importance of feedback control in this essential motor skill.

    1. Neuroscience
    Wenyu Peng, Pan Wang ... Tao Chen
    Research Article

    Neuropathic pain (NP) is caused by a lesion or disease of the somatosensory system and is characterized by abnormal hypersensitivity to stimuli and nociceptive responses to non-noxious stimuli, affecting approximately 7–10% of the general population. However, current first-line drugs like non-steroidal anti-inflammatory agents and opioids have limitations, including dose-limiting side effects, dependence, and tolerability issues. Therefore, developing new interventions for the management of NP is urgent. In this study, we discovered that the high-frequency terahertz stimulation (HFTS) at approximately 36 THz effectively alleviates NP symptoms in mice with spared nerve injury. Computational simulation suggests that the frequency resonates with the carbonyl group in the filter region of Kv1.2 channels, facilitating the translocation of potassium ions. In vivo and in vitro results demonstrate that HFTS reduces the excitability of pyramidal neurons in the anterior cingulate cortex likely through enhancing the voltage-gated K+ and also the leak K+ conductance. This research presents a novel optical intervention strategy with terahertz waves for the treatment of NP and holds promising applications in other nervous system diseases.