Abstract

Experience governs neurogenesis from radial-glial neural stem cells (RGLs) in the adult hippocampus to support memory. Transcription factors in RGLs integrate physiological signals to dictate self-renewal division mode. Whereas asymmetric RGL divisions drive neurogenesis during favorable conditions, symmetric divisions prevent premature neurogenesis while amplifying RGLs to anticipate future neurogenic demands. The identities of transcription factors regulating RGL symmetric self-renewal, unlike those that regulate RGL asymmetric self-renewal, are not known. Here, we show in mice that the transcription factor Kruppel-like factor 9 (Klf9) is elevated in quiescent RGLs and inducible, deletion of Klf9 promotes RGL activation state. Clonal analysis and longitudinal intravital 2-photon imaging directly demonstrate that Klf9 functions as a brake on RGL symmetric self-renewal. In vivo translational profiling of RGLs lacking Klf9 generated a molecular blueprint for RGL symmetric self-renewal that was characterized by upregulation of genetic programs underlying Notch and mitogen signaling, cell-cycle, fatty acid oxidation and lipogenesis. Together, these observations identify Klf9 as a transcriptional regulator of neural stem cell expansion in the adult hippocampus.

Data availability

Sequencing data have been deposited in GEO under accession code GSE164889.

The following data sets were generated

Article and author information

Author details

  1. Nannan Guo

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kelsey D McDermott

    Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu-Tzu Shih

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Haley Zanga

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Debolina Ghosh

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Charlotte Herber

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. William R Meara

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. James H Coleman

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Alexia Zagouras

    Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0899-0910
  10. Lai Ping Wong

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ruslan I Sadreyev

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. J Tiago Gonçalves

    Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Amar Sahay

    Center for Regenerative Medicine, Massachusetts, Massachusetts General Hospital, Boston, United States
    For correspondence
    asahay@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0677-1693

Funding

National Institute of Neurological Disorders and Stroke (R56NS117529)

  • J Tiago Gonçalves

National Institute of Neurological Disorders and Stroke (R56NS117529)

  • Amar Sahay

NA

Reviewing Editor

  1. Joseph G Gleeson, Howard Hughes Medical Institute, The Rockefeller University, United States

Ethics

Animal experimentation: Animals were handled and experiments were conducted in accordance with procedures approved by the Institutional Animal Care and Use Committee (IACUC) at the Massachusetts General Hospital (2011N000084 ) and Albert Einstein College of Medicine in accordance with NIH guidelines.

Version history

  1. Preprint posted: July 14, 2021 (view preprint)
  2. Received: July 14, 2021
  3. Accepted: January 3, 2022
  4. Accepted Manuscript published: January 4, 2022 (version 1)
  5. Version of Record published: February 4, 2022 (version 2)

Copyright

© 2022, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,511
    views
  • 504
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nannan Guo
  2. Kelsey D McDermott
  3. Yu-Tzu Shih
  4. Haley Zanga
  5. Debolina Ghosh
  6. Charlotte Herber
  7. William R Meara
  8. James H Coleman
  9. Alexia Zagouras
  10. Lai Ping Wong
  11. Ruslan I Sadreyev
  12. J Tiago Gonçalves
  13. Amar Sahay
(2022)
Transcriptional regulation of neural stem cell expansion in adult hippocampus
eLife 11:e72195.
https://doi.org/10.7554/eLife.72195

Share this article

https://doi.org/10.7554/eLife.72195

Further reading

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.

    1. Neuroscience
    Josue M Regalado, Ariadna Corredera Asensio ... Priyamvada Rajasethupathy
    Research Article

    Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.