Atmospheric particulate matter aggravates CNS demyelination through involvement of TLR-4/NF-kB signaling and microglial activation

  1. Bing Han
  2. Xing Li
  3. Ruo-Song Ai
  4. Si-Ying Deng
  5. Ze-Qing Ye
  6. Xin Deng
  7. Wen Ma
  8. Shun Xiao
  9. Jing-Zhi Wang
  10. Li-Mei Wang
  11. Chong Xie
  12. Yan Zhang
  13. Yan Xu
  14. Yuan Zhang  Is a corresponding author
  1. Shaanxi Normal University, China
  2. First Affiliated Hospital of Zhengzhou University, China
  3. Shanghai Jiaotong University School of Medicine, China

Abstract

Atmospheric Particulate Matter (PM) is one of the leading environmental risk factors for the global burden of disease. Increasing epidemiological studies demonstrated that PM plays a significant role in CNS demyelinating disorders; however, there is no direct testimony of this, and yet the molecular mechanism by which the occurrence remains unclear. Using multiple in vivo and in vitro strategies, in the present study we demonstrate that PM exposure aggravates neuroinflammation, myelin injury, and dysfunction of movement coordination ability via boosting microglial pro-inflammatory activities, in both the pathological demyelination and physiological myelinogenesis animal models. Indeed, pharmacological disturbance combined with RNA-seq and ChIP-seq suggests that TLR-4/NF-kB signaling mediated a core network of genes that control PM-triggered microglia pathogenicity. In summary, our study defines a novel atmospheric environmental mechanism that mediates PM-aggravated microglia pathogenic activities, and establishes a systematic approach for the investigation of the effects of environmental exposure in neurologic disorders.

Data availability

Figure 1 - Source Data 1, Figure 2 - Source Data 1, Figure 3 - Source Data 1, Figure 3 - Source Data 1, Figure supplement 1 - Source Data 1 and Figure supplement 2 - Source Data 1 contain the numerical data used to generate the figures. Sequencing data are available through the NCBI Gene Expression Omnibus GSE183099.

The following data sets were generated

Article and author information

Author details

  1. Bing Han

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xing Li

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruo-Song Ai

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Si-Ying Deng

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ze-Qing Ye

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xin Deng

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wen Ma

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Shun Xiao

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Jing-Zhi Wang

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Li-Mei Wang

    First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Chong Xie

    Shanghai Jiaotong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Yan Zhang

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Yan Xu

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Yuan Zhang

    Shaanxi Normal University, Xi'an, China
    For correspondence
    yuanzhang_bio@126.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2463-4599

Funding

National Natural Science Foundation of China (82071396)

  • Yuan Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brandon K Harvey, NIDA/NIH, United States

Ethics

Animal experimentation: All experimental procedures and protocols of mice were approved by the Committee on the Ethics of Animal Experiments of Shaanxi Normal University (No. ECES-2015-0247) and were carried out in accordance with the approved institutional guidelines and regulations. C57BL/6 mice (8-10 weeks of age) were purchased from the Fourth Military University (Xi'an, China).

Version history

  1. Received: July 16, 2021
  2. Preprint posted: August 10, 2021 (view preprint)
  3. Accepted: February 18, 2022
  4. Accepted Manuscript published: February 24, 2022 (version 1)
  5. Version of Record published: March 3, 2022 (version 2)
  6. Version of Record updated: March 15, 2022 (version 3)

Copyright

© 2022, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 951
    views
  • 163
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bing Han
  2. Xing Li
  3. Ruo-Song Ai
  4. Si-Ying Deng
  5. Ze-Qing Ye
  6. Xin Deng
  7. Wen Ma
  8. Shun Xiao
  9. Jing-Zhi Wang
  10. Li-Mei Wang
  11. Chong Xie
  12. Yan Zhang
  13. Yan Xu
  14. Yuan Zhang
(2022)
Atmospheric particulate matter aggravates CNS demyelination through involvement of TLR-4/NF-kB signaling and microglial activation
eLife 11:e72247.
https://doi.org/10.7554/eLife.72247

Share this article

https://doi.org/10.7554/eLife.72247

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ffion R Hammond, Amy Lewis ... Philip M Elks
    Research Article

    Tuberculosis is a major global health problem and is one of the top 10 causes of death worldwide. There is a pressing need for new treatments that circumvent emerging antibiotic resistance. Mycobacterium tuberculosis parasitises macrophages, reprogramming them to establish a niche in which to proliferate, therefore macrophage manipulation is a potential host-directed therapy if druggable molecular targets could be identified. The pseudokinase Tribbles1 (Trib1) regulates multiple innate immune processes and inflammatory profiles making it a potential drug target in infections. Trib1 controls macrophage function, cytokine production, and macrophage polarisation. Despite wide-ranging effects on leukocyte biology, data exploring the roles of Tribbles in infection in vivo are limited. Here, we identify that human Tribbles1 is expressed in monocytes and is upregulated at the transcript level after stimulation with mycobacterial antigen. To investigate the mechanistic roles of Tribbles in the host response to mycobacteria in vivo, we used a zebrafish Mycobacterium marinum (Mm) infection tuberculosis model. Zebrafish Tribbles family members were characterised and shown to have substantial mRNA and protein sequence homology to their human orthologues. trib1 overexpression was host-protective against Mm infection, reducing burden by approximately 50%. Conversely, trib1 knockdown/knockout exhibited increased infection. Mechanistically, trib1 overexpression significantly increased the levels of proinflammatory factors il-1β and nitric oxide. The host-protective effect of trib1 was found to be dependent on the E3 ubiquitin kinase Cop1. These findings highlight the importance of Trib1 and Cop1 as immune regulators during infection in vivo and suggest that enhancing macrophage TRIB1 levels may provide a tractable therapeutic intervention to improve bacterial infection outcomes in tuberculosis.

    1. Immunology and Inflammation
    Leen Farhat-Younis, Manho Na ... Yaron Carmi
    Research Article

    Despite the central role of T cells in tumor immunity, attempts to harness their cytotoxic capacity as a therapy have met limited efficacy, partially as a result of the suppressive microenvironment which limits their migration and activation. In contrast, myeloid cells massively infiltrate tumors and are well adapted to survive these harsh conditions. While they are equipped with cell-killing abilities, they often adopt an immunosuppressive phenotype upon migration to tumors. Therefore, the questions of how to modify their activation programming against cancer, and what signaling cascades should be activated in myeloid cells to elicit their cytotoxicity have remained unclear. Here, we found that activation of IgM-induced signaling in murine myeloid cells results in secretion of lytic granules and massive tumor cell death. These findings open venues for designing novel immunotherapy by equipping monocytes with chimeric receptors that target tumor antigens and consequently, signal through IgM receptor. Nonetheless, we found that myeloid cells do not express the antibody-derived portion used to recognize the tumor antigen due to the induction of an ER stress response. To overcome this limitation, we designed chimeric receptors that are based on the high-affinity FcγRI for IgG. Incubation of macrophages expressing these receptors along with tumor-binding IgG induced massive tumor cell killing and secretion of reactive oxygen species and Granzyme B. Overall, this work highlights the challenges involved in genetically reprogramming the signaling in myeloid cells and provides a framework for endowing myeloid cells with antigen-specific cytotoxicity.