Judgments of agency are affected by sensory noise without recruiting metacognitive processing
Abstract
Acting in the world is accompanied by a sense of agency, or experience of control over our actions and their outcomes. As humans, we can report on this experience through judgments of agency. These judgments often occur under noisy conditions. We examined the computations underlying judgments of agency, in particular under the influence of sensory noise. Building on previous literature, we studied whether judgments of agency incorporate uncertainty in the same way that confidence judgments do, which would imply that the former share computational mechanisms with metacognitive judgments. In two tasks, participants rated agency, or confidence in a decision about their agency, over a virtual hand that tracked their movements, either synchronously or with a delay and either under high or low noise. We compared the predictions of two computational models to participants' ratings and found that agency ratings, unlike confidence, were best explained by a model involving no estimates of sensory noise. We propose that agency judgments reflect first-order measures of the internal signal, without involving metacognitive computations, challenging the assumed link between the two cognitive processes.
Data availability
Raw data is publicly available under https://gitlab.com/MarikaConstant/metaAgency.
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (337619223 / RTG2386)
- Marika Constant
Volkswagen Foundation (91620)
- Marika Constant
- Elisa Filevich
Israeli Science Foundation (ISF 1169/17)
- Roy Salomon
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Subjects gave signed, informed consent before starting the experiment. The ethics committee of the Institute of Psychology at the Humboldt-Universität zu Berlin approved the study (Nr. 2020-29), which conformed to the Declaration of Helsinki.
Reviewing Editor
- Valentin Wyart, École normale supérieure, PSL University, INSERM, France
Version history
- Preprint posted: April 29, 2021 (view preprint)
- Received: July 20, 2021
- Accepted: January 19, 2022
- Accepted Manuscript published: January 20, 2022 (version 1)
- Version of Record published: February 7, 2022 (version 2)
Copyright
© 2022, Constant et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,043
- Page views
-
- 129
- Downloads
-
- 6
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The lateral geniculate nucleus (LGN), a retinotopic relay center where visual inputs from the retina are processed and relayed to the visual cortex, has been proposed as a potential target for artificial vision. At present, it is unknown whether optogenetic LGN stimulation is sufficient to elicit behaviorally relevant percepts, and the properties of LGN neural responses relevant for artificial vision have not been thoroughly characterized. Here, we demonstrate that tree shrews pretrained on a visual detection task can detect optogenetic LGN activation using an AAV2-CamKIIα-ChR2 construct and readily generalize from visual to optogenetic detection. Simultaneous recordings of LGN spiking activity and primary visual cortex (V1) local field potentials (LFP) during optogenetic LGN stimulation show that LGN neurons reliably follow optogenetic stimulation at frequencies up to 60 Hz, and uncovered a striking phase locking between the V1 local field potential (LFP) and the evoked spiking activity in LGN. These phase relationships were maintained over a broad range of LGN stimulation frequencies, up to 80 Hz, with spike field coherence values favoring higher frequencies, indicating the ability to relay temporally precise information to V1 using light activation of the LGN. Finally, V1 LFP responses showed sensitivity values to LGN optogenetic activation that were similar to the animal's behavioral performance. Taken together, our findings confirm the LGN as a potential target for visual prosthetics in a highly visual mammal closely related to primates.
-
- Neuroscience
Hippocampal place cell sequences have been hypothesized to serve as diverse purposes as the induction of synaptic plasticity, formation and consolidation of long-term memories, or navigation and planning. During spatial behaviors of rodents, sequential firing of place cells at the theta timescale (known as theta sequences) encodes running trajectories, which can be considered as one-dimensional behavioral sequences of traversed locations. In a two-dimensional space, however, each single location can be visited along arbitrary one-dimensional running trajectories. Thus, a place cell will generally take part in multiple different theta sequences, raising questions about how this two-dimensional topology can be reconciled with the idea of hippocampal sequences underlying memory of (one-dimensional) episodes. Here, we propose a computational model of cornu ammonis 3 (CA3) and dentate gyrus (DG), where sensorimotor input drives the direction-dependent (extrinsic) theta sequences within CA3 reflecting the two-dimensional spatial topology, whereas the intrahippocampal CA3-DG projections concurrently produce intrinsic sequences that are independent of the specific running trajectory. Consistent with experimental data, intrinsic theta sequences are less prominent, but can nevertheless be detected during theta activity, thereby serving as running-direction independent landmark cues. We hypothesize that the intrinsic sequences largely reflect replay and preplay activity during non-theta states.