Androglobin, a chimeric mammalian globin, is required for male fertility

  1. Anna Keppner
  2. Miguel Correia
  3. Sara Santambrogio
  4. Teng Wei Koay
  5. Darko Maric
  6. Carina Osterhof
  7. Denise V Winter
  8. Angèle Clerc
  9. Michael Stumpe
  10. Frédéric Chalmel
  11. Sylvia Dewilde
  12. Alex Odermatt
  13. Dieter Kressler
  14. Thomas Hankeln
  15. Roland H Wenger
  16. David Hoogewijs  Is a corresponding author
  1. University of Fribourg, Switzerland
  2. University of Zurich, Switzerland
  3. University of Mainz, Germany
  4. University of Basel, Switzerland
  5. University of Rennes, Inserm, UMR_S 1085, France
  6. University of Antwerp, Belgium

Abstract

Spermatogenesis is a highly specialised differentiation process driven by a dynamic gene expression program and ending with the production of mature spermatozoa. Whereas hundreds of genes are known to be essential for male germline proliferation and differentiation, the contribution of several genes remains uncharacterized. The predominant expression of the latest globin family member, androglobin (Adgb), in mammalian testis tissue prompted us to assess its physiological function in spermatogenesis. Adgb knockout mice display male infertility, reduced testis weight, impaired maturation of elongating spermatids, abnormal sperm shape and ultrastructural defects in microtubule and mitochondrial organisation. Epididymal sperm from Adgb knockout animals display multiple flagellar malformations including coiled, bifid or shortened flagella, and erratic acrosomal development. Following immunoprecipitation and mass spectrometry, we could identify septin 10 (Sept10) as interactor of Adgb. The Sept10-Adgb interaction was confirmed both in vivo using testis lysates, and in vitro by reciprocal co-immunoprecipitation experiments. Furthermore, absence of Adgb leads to mislocalisation of Sept10 in sperm, indicating defective manchette and sperm annulus formation. Finally, in vitro data suggest that Adgb contributes to Sept10 proteolysis in a calmodulin (CaM)-dependent manner. Collectively, our results provide evidence that Adgb is essential for murine spermatogenesis and further suggest that Adgb is required for sperm head shaping via the manchette and proper flagellum formation.

Data availability

RNA-sequencing data have been submitted to ENA with accession number PRJEB46499 and is also available as supplemental dataset 1 (excel table).All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are provided for Figures 1, 2, 4B, 4C, 4D, 4E, 6A, 6B, 6C, 6D, 6E, 6F, Fig. 1-fig. suppl. 1, Fig. 4-fig. suppl. 1A, B, C, D, E, F, G, Fig. 4-fig. suppl. 2A, B, C, Fig. 4-fig. suppl. 3A, B, C, D, E, Fig. 4-fig. suppl. 5, Fig. 4-fig. suppl. 6B, Fig. 6-fig. suppl. 1A, Fig. 6-fig. suppl. 4, Fig. 6-fig. suppl. 5D, E.

Article and author information

Author details

  1. Anna Keppner

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Miguel Correia

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Sara Santambrogio

    Institute of Physiology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Teng Wei Koay

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Darko Maric

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Carina Osterhof

    Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1699-7410
  7. Denise V Winter

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Angèle Clerc

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Stumpe

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9443-9326
  10. Frédéric Chalmel

    University of Rennes, Inserm, UMR_S 1085, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Sylvia Dewilde

    Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  12. Alex Odermatt

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  13. Dieter Kressler

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4855-3563
  14. Thomas Hankeln

    Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Roland H Wenger

    Institute of Physiology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. David Hoogewijs

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    For correspondence
    david.hoogewijs@unifr.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5547-6004

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_173000)

  • David Hoogewijs

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_207460)

  • David Hoogewijs

Deutsche Forschungsgemeinschaft (HO 5837/1-1)

  • David Hoogewijs

Deutsche Forschungsgemeinschaft (HA 2103/9-1)

  • Thomas Hankeln

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. T Rajendra Kumar, University of Colorado, United States

Ethics

Animal experimentation: All experimental procedures and animal maintenance followed Swiss federal guidelines and the study was revised and approved by the "Service de la sécurité alimentaire et des affaires vétérinaires" (SAAV) of the canton of Fribourg, Switzerland (license number 2017_16_FR).

Version history

  1. Received: July 21, 2021
  2. Preprint posted: September 18, 2021 (view preprint)
  3. Accepted: June 13, 2022
  4. Accepted Manuscript published: June 14, 2022 (version 1)
  5. Version of Record published: July 1, 2022 (version 2)

Copyright

© 2022, Keppner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,162
    views
  • 314
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Keppner
  2. Miguel Correia
  3. Sara Santambrogio
  4. Teng Wei Koay
  5. Darko Maric
  6. Carina Osterhof
  7. Denise V Winter
  8. Angèle Clerc
  9. Michael Stumpe
  10. Frédéric Chalmel
  11. Sylvia Dewilde
  12. Alex Odermatt
  13. Dieter Kressler
  14. Thomas Hankeln
  15. Roland H Wenger
  16. David Hoogewijs
(2022)
Androglobin, a chimeric mammalian globin, is required for male fertility
eLife 11:e72374.
https://doi.org/10.7554/eLife.72374

Share this article

https://doi.org/10.7554/eLife.72374

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.