Androglobin, a chimeric mammalian globin, is required for male fertility

  1. Anna Keppner
  2. Miguel Correia
  3. Sara Santambrogio
  4. Teng Wei Koay
  5. Darko Maric
  6. Carina Osterhof
  7. Denise V Winter
  8. Angèle Clerc
  9. Michael Stumpe
  10. Frédéric Chalmel
  11. Sylvia Dewilde
  12. Alex Odermatt
  13. Dieter Kressler
  14. Thomas Hankeln
  15. Roland H Wenger
  16. David Hoogewijs  Is a corresponding author
  1. University of Fribourg, Switzerland
  2. University of Zurich, Switzerland
  3. University of Mainz, Germany
  4. University of Basel, Switzerland
  5. University of Rennes, Inserm, UMR_S 1085, France
  6. University of Antwerp, Belgium

Abstract

Spermatogenesis is a highly specialised differentiation process driven by a dynamic gene expression program and ending with the production of mature spermatozoa. Whereas hundreds of genes are known to be essential for male germline proliferation and differentiation, the contribution of several genes remains uncharacterized. The predominant expression of the latest globin family member, androglobin (Adgb), in mammalian testis tissue prompted us to assess its physiological function in spermatogenesis. Adgb knockout mice display male infertility, reduced testis weight, impaired maturation of elongating spermatids, abnormal sperm shape and ultrastructural defects in microtubule and mitochondrial organisation. Epididymal sperm from Adgb knockout animals display multiple flagellar malformations including coiled, bifid or shortened flagella, and erratic acrosomal development. Following immunoprecipitation and mass spectrometry, we could identify septin 10 (Sept10) as interactor of Adgb. The Sept10-Adgb interaction was confirmed both in vivo using testis lysates, and in vitro by reciprocal co-immunoprecipitation experiments. Furthermore, absence of Adgb leads to mislocalisation of Sept10 in sperm, indicating defective manchette and sperm annulus formation. Finally, in vitro data suggest that Adgb contributes to Sept10 proteolysis in a calmodulin (CaM)-dependent manner. Collectively, our results provide evidence that Adgb is essential for murine spermatogenesis and further suggest that Adgb is required for sperm head shaping via the manchette and proper flagellum formation.

Data availability

RNA-sequencing data have been submitted to ENA with accession number PRJEB46499 and is also available as supplemental dataset 1 (excel table).All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are provided for Figures 1, 2, 4B, 4C, 4D, 4E, 6A, 6B, 6C, 6D, 6E, 6F, Fig. 1-fig. suppl. 1, Fig. 4-fig. suppl. 1A, B, C, D, E, F, G, Fig. 4-fig. suppl. 2A, B, C, Fig. 4-fig. suppl. 3A, B, C, D, E, Fig. 4-fig. suppl. 5, Fig. 4-fig. suppl. 6B, Fig. 6-fig. suppl. 1A, Fig. 6-fig. suppl. 4, Fig. 6-fig. suppl. 5D, E.

Article and author information

Author details

  1. Anna Keppner

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Miguel Correia

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Sara Santambrogio

    Institute of Physiology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Teng Wei Koay

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Darko Maric

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Carina Osterhof

    Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1699-7410
  7. Denise V Winter

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Angèle Clerc

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Stumpe

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9443-9326
  10. Frédéric Chalmel

    University of Rennes, Inserm, UMR_S 1085, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Sylvia Dewilde

    Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  12. Alex Odermatt

    Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  13. Dieter Kressler

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4855-3563
  14. Thomas Hankeln

    Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Roland H Wenger

    Institute of Physiology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. David Hoogewijs

    Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
    For correspondence
    david.hoogewijs@unifr.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5547-6004

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_173000)

  • David Hoogewijs

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_207460)

  • David Hoogewijs

Deutsche Forschungsgemeinschaft (HO 5837/1-1)

  • David Hoogewijs

Deutsche Forschungsgemeinschaft (HA 2103/9-1)

  • Thomas Hankeln

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures and animal maintenance followed Swiss federal guidelines and the study was revised and approved by the "Service de la sécurité alimentaire et des affaires vétérinaires" (SAAV) of the canton of Fribourg, Switzerland (license number 2017_16_FR).

Copyright

© 2022, Keppner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,421
    views
  • 335
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Keppner
  2. Miguel Correia
  3. Sara Santambrogio
  4. Teng Wei Koay
  5. Darko Maric
  6. Carina Osterhof
  7. Denise V Winter
  8. Angèle Clerc
  9. Michael Stumpe
  10. Frédéric Chalmel
  11. Sylvia Dewilde
  12. Alex Odermatt
  13. Dieter Kressler
  14. Thomas Hankeln
  15. Roland H Wenger
  16. David Hoogewijs
(2022)
Androglobin, a chimeric mammalian globin, is required for male fertility
eLife 11:e72374.
https://doi.org/10.7554/eLife.72374

Share this article

https://doi.org/10.7554/eLife.72374

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    David Trombley McSwiggen, Helen Liu ... Hilary P Beck
    Research Article

    The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.

    1. Cell Biology
    Hongqian Chen, Hui-Qing Fang ... Peng Liu
    Tools and Resources

    The FSH-FSHR pathway has been considered an essential regulator in reproductive development and fertility. But there has been emerging evidence of FSHR expression in extragonadal organs. This poses new questions and long-term debates regarding the physiological role of the FSH-FSHR, and underscores the need for reliable, in vivo analysis of FSHR expression in animal models. However, conventional methods have proven insufficient for examining FSHR expression due to several limitations. To address this challenge, we developed Fshr-ZsGreen reporter mice under the control of Fshr endogenous promoter using CRISPR-Cas9. With this novel genetic tool, we provide a reliable readout of Fshr expression at single-cell resolution level in vivo and in real time. Reporter animals were also subjected to additional analyses,to define the accurate expression profile of FSHR in gonadal and extragonadal organs/tissues. Our compelling results not only demonstrated Fshr expression in intragonadal tissues but also, strikingly, unveiled notably increased expression in Leydig cells, osteoblast lineage cells, endothelial cells in vascular structures, and epithelial cells in bronchi of the lung and renal tubes. The genetic decoding of the widespread pattern of Fshr expression highlights its physiological relevance beyond reproduction and fertility, and opens new avenues for therapeutic options for age-related disorders of the bones, lungs, kidneys, and hearts, among other tissues. Exploiting the power of the Fshr knockin reporter animals, this report provides the first comprehensive genetic record of the spatial distribution of FSHR expression, correcting a long-term misconception about Fshr expression and offering prospects for extensive exploration of FSH-FSHR biology.