Evolutionary conservation of centriole rotational asymmetry in the human centrosome

  1. Noémie Gaudin
  2. Paula Martin Gil
  3. Meriem Boumendjel
  4. Dmitry Ershov
  5. Catherine Pioche-Durieu
  6. Manon Bouix
  7. Quentin Delobelle
  8. Lucia Maniscalco
  9. Than Bich Ngan Phan
  10. Vincent Heyer
  11. Bernardo Reina-San-Martin
  12. Juliette Azimzadeh  Is a corresponding author
  1. Institut Jacques Monod, France
  2. Institut Pasteur, USR 3756 CNRS, France
  3. Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), France

Abstract

Centrioles are formed by microtubule triplets in a nine-fold symmetric arrangement. In flagellated protists and in animal multiciliated cells, accessory structures tethered to specific triplets render the centrioles rotationally asymmetric, a property that is key to cytoskeletal and cellular organization in these contexts. In contrast, centrioles within the centrosome of animal cells display no conspicuous rotational asymmetry. Here, we uncover rotationally asymmetric molecular features in human centrioles. Using ultrastructure expansion microscopy, we show that LRRCC1, the ortholog of a protein originally characterized in flagellate green algae, associates preferentially to two consecutive triplets in the distal lumen of human centrioles. LRRCC1 partially co-localizes and affects the recruitment of another distal component, C2CD3, which also has an asymmetric localization pattern in the centriole lumen. Together, LRRCC1 and C2CD3 delineate a structure reminiscent of a filamentous density observed by electron microscopy in flagellates, termed the 'acorn'. Functionally, the depletion of LRRCC1 in human cells induced defects in centriole structure, ciliary assembly and ciliary signaling, supporting that LRRCC1 cooperates with C2CD3 to organizing the distal region of centrioles. Since a mutation in the LRRCC1 gene has been identified in Joubert syndrome patients, this finding is relevant in the context of human ciliopathies. Taken together, our results demonstrate that rotational asymmetry is an ancient property of centrioles that is broadly conserved in human cells. Our work also reveals that asymmetrically localized proteins are key for primary ciliogenesis and ciliary signaling in human cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files are available from the Dryad database (doi:10.5061/dryad.95x69p8m5).

The following data sets were generated

Article and author information

Author details

  1. Noémie Gaudin

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Paula Martin Gil

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Meriem Boumendjel

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Dmitry Ershov

    Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, France, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Pioche-Durieu

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0988-1169
  6. Manon Bouix

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Quentin Delobelle

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Lucia Maniscalco

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Than Bich Ngan Phan

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Vincent Heyer

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Bernardo Reina-San-Martin

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Juliette Azimzadeh

    Institut Jacques Monod, Paris, France
    For correspondence
    juliette.azimzadeh@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7292-9973

Funding

Agence Nationale de la Recherche (ANR-21-CE13-008)

  • Juliette Azimzadeh

Fondation pour la Recherche Médicale (Graduate Student Fellowship)

  • Noémie Gaudin

Fondation ARC pour la Recherche sur le Cancer (Dotation)

  • Juliette Azimzadeh

Ligue Contre le Cancer (Dotation)

  • Juliette Azimzadeh

Labex Who Am I?

  • Juliette Azimzadeh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jens Lüders, Institute for Research in Biomedicine, Spain

Version history

  1. Received: July 21, 2021
  2. Preprint posted: July 22, 2021 (view preprint)
  3. Accepted: March 22, 2022
  4. Accepted Manuscript published: March 23, 2022 (version 1)
  5. Version of Record published: April 5, 2022 (version 2)

Copyright

© 2022, Gaudin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,710
    views
  • 396
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noémie Gaudin
  2. Paula Martin Gil
  3. Meriem Boumendjel
  4. Dmitry Ershov
  5. Catherine Pioche-Durieu
  6. Manon Bouix
  7. Quentin Delobelle
  8. Lucia Maniscalco
  9. Than Bich Ngan Phan
  10. Vincent Heyer
  11. Bernardo Reina-San-Martin
  12. Juliette Azimzadeh
(2022)
Evolutionary conservation of centriole rotational asymmetry in the human centrosome
eLife 11:e72382.
https://doi.org/10.7554/eLife.72382

Share this article

https://doi.org/10.7554/eLife.72382

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.