Evolutionary conservation of centriole rotational asymmetry in the human centrosome

  1. Noémie Gaudin
  2. Paula Martin Gil
  3. Meriem Boumendjel
  4. Dmitry Ershov
  5. Catherine Pioche-Durieu
  6. Manon Bouix
  7. Quentin Delobelle
  8. Lucia Maniscalco
  9. Than Bich Ngan Phan
  10. Vincent Heyer
  11. Bernardo Reina-San-Martin
  12. Juliette Azimzadeh  Is a corresponding author
  1. Institut Jacques Monod, France
  2. Institut Pasteur, USR 3756 CNRS, France
  3. Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), France

Abstract

Centrioles are formed by microtubule triplets in a nine-fold symmetric arrangement. In flagellated protists and in animal multiciliated cells, accessory structures tethered to specific triplets render the centrioles rotationally asymmetric, a property that is key to cytoskeletal and cellular organization in these contexts. In contrast, centrioles within the centrosome of animal cells display no conspicuous rotational asymmetry. Here, we uncover rotationally asymmetric molecular features in human centrioles. Using ultrastructure expansion microscopy, we show that LRRCC1, the ortholog of a protein originally characterized in flagellate green algae, associates preferentially to two consecutive triplets in the distal lumen of human centrioles. LRRCC1 partially co-localizes and affects the recruitment of another distal component, C2CD3, which also has an asymmetric localization pattern in the centriole lumen. Together, LRRCC1 and C2CD3 delineate a structure reminiscent of a filamentous density observed by electron microscopy in flagellates, termed the 'acorn'. Functionally, the depletion of LRRCC1 in human cells induced defects in centriole structure, ciliary assembly and ciliary signaling, supporting that LRRCC1 cooperates with C2CD3 to organizing the distal region of centrioles. Since a mutation in the LRRCC1 gene has been identified in Joubert syndrome patients, this finding is relevant in the context of human ciliopathies. Taken together, our results demonstrate that rotational asymmetry is an ancient property of centrioles that is broadly conserved in human cells. Our work also reveals that asymmetrically localized proteins are key for primary ciliogenesis and ciliary signaling in human cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files are available from the Dryad database (doi:10.5061/dryad.95x69p8m5).

The following data sets were generated

Article and author information

Author details

  1. Noémie Gaudin

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Paula Martin Gil

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Meriem Boumendjel

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Dmitry Ershov

    Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, France, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Pioche-Durieu

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0988-1169
  6. Manon Bouix

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Quentin Delobelle

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Lucia Maniscalco

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Than Bich Ngan Phan

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Vincent Heyer

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Bernardo Reina-San-Martin

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Juliette Azimzadeh

    Institut Jacques Monod, Paris, France
    For correspondence
    juliette.azimzadeh@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7292-9973

Funding

Agence Nationale de la Recherche (ANR-21-CE13-008)

  • Juliette Azimzadeh

Fondation pour la Recherche Médicale (Graduate Student Fellowship)

  • Noémie Gaudin

Fondation ARC pour la Recherche sur le Cancer (Dotation)

  • Juliette Azimzadeh

Ligue Contre le Cancer (Dotation)

  • Juliette Azimzadeh

Labex Who Am I?

  • Juliette Azimzadeh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gaudin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,919
    views
  • 417
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noémie Gaudin
  2. Paula Martin Gil
  3. Meriem Boumendjel
  4. Dmitry Ershov
  5. Catherine Pioche-Durieu
  6. Manon Bouix
  7. Quentin Delobelle
  8. Lucia Maniscalco
  9. Than Bich Ngan Phan
  10. Vincent Heyer
  11. Bernardo Reina-San-Martin
  12. Juliette Azimzadeh
(2022)
Evolutionary conservation of centriole rotational asymmetry in the human centrosome
eLife 11:e72382.
https://doi.org/10.7554/eLife.72382

Share this article

https://doi.org/10.7554/eLife.72382

Further reading

    1. Cell Biology
    2. Plant Biology
    Baihong Zhang, Shuqin Huang ... Wenli Chen
    Research Article

    Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.