Evolutionary conservation of centriole rotational asymmetry in the human centrosome

  1. Noémie Gaudin
  2. Paula Martin Gil
  3. Meriem Boumendjel
  4. Dmitry Ershov
  5. Catherine Pioche-Durieu
  6. Manon Bouix
  7. Quentin Delobelle
  8. Lucia Maniscalco
  9. Than Bich Ngan Phan
  10. Vincent Heyer
  11. Bernardo Reina-San-Martin
  12. Juliette Azimzadeh  Is a corresponding author
  1. Institut Jacques Monod, France
  2. Institut Pasteur, USR 3756 CNRS, France
  3. Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), France

Abstract

Centrioles are formed by microtubule triplets in a nine-fold symmetric arrangement. In flagellated protists and in animal multiciliated cells, accessory structures tethered to specific triplets render the centrioles rotationally asymmetric, a property that is key to cytoskeletal and cellular organization in these contexts. In contrast, centrioles within the centrosome of animal cells display no conspicuous rotational asymmetry. Here, we uncover rotationally asymmetric molecular features in human centrioles. Using ultrastructure expansion microscopy, we show that LRRCC1, the ortholog of a protein originally characterized in flagellate green algae, associates preferentially to two consecutive triplets in the distal lumen of human centrioles. LRRCC1 partially co-localizes and affects the recruitment of another distal component, C2CD3, which also has an asymmetric localization pattern in the centriole lumen. Together, LRRCC1 and C2CD3 delineate a structure reminiscent of a filamentous density observed by electron microscopy in flagellates, termed the 'acorn'. Functionally, the depletion of LRRCC1 in human cells induced defects in centriole structure, ciliary assembly and ciliary signaling, supporting that LRRCC1 cooperates with C2CD3 to organizing the distal region of centrioles. Since a mutation in the LRRCC1 gene has been identified in Joubert syndrome patients, this finding is relevant in the context of human ciliopathies. Taken together, our results demonstrate that rotational asymmetry is an ancient property of centrioles that is broadly conserved in human cells. Our work also reveals that asymmetrically localized proteins are key for primary ciliogenesis and ciliary signaling in human cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files are available from the Dryad database (doi:10.5061/dryad.95x69p8m5).

The following data sets were generated

Article and author information

Author details

  1. Noémie Gaudin

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Paula Martin Gil

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Meriem Boumendjel

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Dmitry Ershov

    Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, France, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Pioche-Durieu

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0988-1169
  6. Manon Bouix

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Quentin Delobelle

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Lucia Maniscalco

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Than Bich Ngan Phan

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Vincent Heyer

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Bernardo Reina-San-Martin

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Juliette Azimzadeh

    Institut Jacques Monod, Paris, France
    For correspondence
    juliette.azimzadeh@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7292-9973

Funding

Agence Nationale de la Recherche (ANR-21-CE13-008)

  • Juliette Azimzadeh

Fondation pour la Recherche Médicale (Graduate Student Fellowship)

  • Noémie Gaudin

Fondation ARC pour la Recherche sur le Cancer (Dotation)

  • Juliette Azimzadeh

Ligue Contre le Cancer (Dotation)

  • Juliette Azimzadeh

Labex Who Am I?

  • Juliette Azimzadeh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gaudin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,872
    views
  • 413
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noémie Gaudin
  2. Paula Martin Gil
  3. Meriem Boumendjel
  4. Dmitry Ershov
  5. Catherine Pioche-Durieu
  6. Manon Bouix
  7. Quentin Delobelle
  8. Lucia Maniscalco
  9. Than Bich Ngan Phan
  10. Vincent Heyer
  11. Bernardo Reina-San-Martin
  12. Juliette Azimzadeh
(2022)
Evolutionary conservation of centriole rotational asymmetry in the human centrosome
eLife 11:e72382.
https://doi.org/10.7554/eLife.72382

Share this article

https://doi.org/10.7554/eLife.72382

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.