Analysis of combinatorial chemokine receptor expression dynamics using multi-receptor reporter mice

  1. Laura Medina-Ruiz  Is a corresponding author
  2. Robin Bartolini
  3. Gillian J Wilson
  4. Douglas P Dyer
  5. Francesca Vidler
  6. Catherine E Hughes
  7. Fabian Schuette
  8. Samantha Love
  9. Marieke Pingen
  10. Alan James Hayes
  11. Jun Fu
  12. Adrian Francis Stewart
  13. Gerard J Graham  Is a corresponding author
  1. University of Glasgow, United Kingdom
  2. University of Manchester, United Kingdom
  3. Shandong University, China
  4. Technische Universität Dresden, Germany

Abstract

Inflammatory chemokines and their receptors are central to the development of inflammatory/immune pathologies. The apparent complexity of this system, coupled with lack of appropriate in vivo models, has limited our understanding of how chemokines orchestrate inflammatory responses and has hampered attempts at targeting this system in inflammatory disease. Novel approaches are therefore needed to provide crucial biological, and therapeutic, insights into the chemokine-chemokine receptor family. Here, we report the generation of transgenic multi-chemokine receptor reporter mice in which spectrally-distinct fluorescent reporters mark expression of CCRs 1, 2, 3 and 5, key receptors for myeloid cell recruitment in inflammation. Analysis of these animals has allowed us to define, for the first time, individual and combinatorial receptor expression patterns on myeloid cells in resting and inflamed conditions. Our results demonstrate that chemokine receptor expression is highly specific, and more selective than previously anticipated.

Data availability

Data relating to this study are available on Dryad (https://doi.org/10.5061/dryad.3r2280gjs). Mouse lines generated in this study will be available, on request, from the corresponding author.

The following data sets were generated

Article and author information

Author details

  1. Laura Medina-Ruiz

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Laura.medina-ruiz@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2934-534X
  2. Robin Bartolini

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gillian J Wilson

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Douglas P Dyer

    Institute of Infection, Immunity and Inflammation, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Francesca Vidler

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Catherine E Hughes

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Fabian Schuette

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Samantha Love

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Marieke Pingen

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Alan James Hayes

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2708-6230
  11. Jun Fu

    Shandong University-HelmhoInstitute of Infection, Immunity and Inflammationof Biotechnology, Shandong University, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Adrian Francis Stewart

    Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4754-1707
  13. Gerard J Graham

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    gerard.graham@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7801-204X

Funding

Wellcome Trust (217093/Z/19/Z)

  • Laura Medina-Ruiz
  • Robin Bartolini
  • Douglas P Dyer
  • Francesca Vidler
  • Catherine E Hughes
  • Fabian Schuette
  • Marieke Pingen
  • Gerard J Graham

Medical Research Council (MRV0109721)

  • Samantha Love
  • Marieke Pingen
  • Alan James Hayes
  • Gerard J Graham

Max-Planck-Institute for Cell Biology and Genetics (open access funding)

  • Adrian Francis Stewart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out under the auspices of a UK Home Office Project License and were approved by the local University of Glasgow Ethical Review Committee.

Copyright

© 2022, Medina-Ruiz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,002
    views
  • 400
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Medina-Ruiz
  2. Robin Bartolini
  3. Gillian J Wilson
  4. Douglas P Dyer
  5. Francesca Vidler
  6. Catherine E Hughes
  7. Fabian Schuette
  8. Samantha Love
  9. Marieke Pingen
  10. Alan James Hayes
  11. Jun Fu
  12. Adrian Francis Stewart
  13. Gerard J Graham
(2022)
Analysis of combinatorial chemokine receptor expression dynamics using multi-receptor reporter mice
eLife 11:e72418.
https://doi.org/10.7554/eLife.72418

Share this article

https://doi.org/10.7554/eLife.72418

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Patsy R Tomlinson, Rachel G Knox ... Robert K Semple
    Research Article

    PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.

    1. Immunology and Inflammation
    Shih-Wen Huang, Yein-Gei Lai ... Nan-Shih Liao
    Research Article

    Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.