The pupillary light response as a physiological index of aphantasia, sensory and phenomenological imagery strength

  1. Lachlan Kay
  2. Rebecca Keogh  Is a corresponding author
  3. Thomas Andrillon
  4. Joel Pearson
  1. University of New South Wales, Australia
  2. Macquarie University, Australia
  3. Sorbonne Université, France

Abstract

The pupillary light response is an important automatic physiological response which optimises light reaching the retina. Recent work has shown that the pupil also adjusts in response to illusory brightness and a range of cognitive functions, however, it remains unclear what exactly drives these endogenous changes. Here we show that the imagery pupillary light response correlates with objective measures of sensory imagery strength. Further, the trial-by-trial phenomenological vividness of visual imagery is tracked by the imagery pupillary light response. We also demonstrated that a group of individuals without visual imagery (aphantasia) do not show any significant evidence of an imagery pupillary light response, however they do show perceptual pupil light responses and pupil dilation with larger cognitive load. Our results provide evidence that the pupillary light response indexes the sensory strength of visual imagery and this work also provides the first physiological validation of aphantasia.

Data availability

Figure 1 - Source Data 1& 2, Figure 2 - Source Data 3, and Figure 3 - Source Data 4 contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Lachlan Kay

    School of Psychology, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Rebecca Keogh

    School of Psychological Sciences, Macquarie University, Sydney, Australia
    For correspondence
    rebeccalkeogh@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4814-433X
  3. Thomas Andrillon

    Institut du Cerveau - Paris Brain Institute, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Joel Pearson

    School of Psychology, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3704-5037

Funding

National Health and Medical Research Council (APP1024800)

  • Joel Pearson

National Health and Medical Research Council (APP1046198)

  • Joel Pearson

National Health and Medical Research Council (APP1085404)

  • Joel Pearson

National Health and Medical Research Council (APP1049596)

  • Joel Pearson

Australian Research Council (DP140101560)

  • Joel Pearson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John T Serences, University of California, San Diego, United States

Ethics

Human subjects: Informed written consent was obtained from all participants to participate in the experiment and to publish their anonymised data in a journal article. Both experiments were approved by the UNSW Human Research Ethics Advisory Panel (HREAP-C 3182).

Version history

  1. Received: July 26, 2021
  2. Preprint posted: September 3, 2021 (view preprint)
  3. Accepted: March 30, 2022
  4. Accepted Manuscript published: March 31, 2022 (version 1)
  5. Version of Record published: April 19, 2022 (version 2)

Copyright

© 2022, Kay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,798
    views
  • 1,136
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lachlan Kay
  2. Rebecca Keogh
  3. Thomas Andrillon
  4. Joel Pearson
(2022)
The pupillary light response as a physiological index of aphantasia, sensory and phenomenological imagery strength
eLife 11:e72484.
https://doi.org/10.7554/eLife.72484

Share this article

https://doi.org/10.7554/eLife.72484

Further reading

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.

    1. Neuroscience
    Josue M Regalado, Ariadna Corredera Asensio ... Priyamvada Rajasethupathy
    Research Article

    Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.