Synergistic phase separation of two pathways promotes integrin clustering and nascent adhesion formation

  1. Lindsay B Case  Is a corresponding author
  2. Milagros De Pasquale
  3. Lisa Henry
  4. Michael K Rosen  Is a corresponding author
  1. Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, United States
  2. Massachusetts Institute of Technology, United States

Abstract

Integrin adhesion complexes (IACs) are integrin-based plasma membrane-associated compartments where cells sense environmental cues. The physical mechanisms and molecular interactions that mediate initial IAC formation are unclear. We found that both p130Cas ('Cas') and Focal adhesion kinase ('FAK') undergo liquid-liquid phase separation in vitro under physiologic conditions. Cas- and FAK- driven phase separation is sufficient to reconstitute kindlin-dependent integrin clustering in vitro with recombinant mammalian proteins. In vitro condensates and IACs in mouse embryonic fibroblasts (MEFs) exhibit similar sensitivities to environmental perturbations including changes in temperature and pH. Furthermore, mutations that inhibit or enhance phase separation in vitro reduce or increase the number of IACs in MEFs, respectively. Finally, we find that the Cas and FAK pathways act synergistically to promote phase separation, integrin clustering, IAC formation and partitioning of key components in vitro and in cells. We propose that Cas- and FAK- driven phase separation provides an intracellular trigger for integrin clustering and nascent IAC formation.

Data availability

If the article is accepted, all imaging data will be deposited in the Dryad database before publication.

The following data sets were generated

Article and author information

Author details

  1. Lindsay B Case

    Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    lcase@mit.edu
    Competing interests
    No competing interests declared.
  2. Milagros De Pasquale

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Lisa Henry

    Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Michael K Rosen

    Department of Biophysics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    michael.rosen@utsouthwestern.edu
    Competing interests
    Michael K Rosen, is a co-founder of Faze Medicines.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0775-7917

Funding

Damon Runyon Cancer Research Foundation (postdoctoral fellowship,DRG-2249-16)

  • Lindsay B Case
  • Michael K Rosen

Damon Runyon Cancer Research Foundation (Dale Frey Scientist Award,DFS-38-20)

  • Lindsay B Case

Howard Hughes Medical Institute (Investigator)

  • Michael K Rosen

Welch Foundation (I-1544)

  • Michael K Rosen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Case et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,138
    views
  • 804
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lindsay B Case
  2. Milagros De Pasquale
  3. Lisa Henry
  4. Michael K Rosen
(2022)
Synergistic phase separation of two pathways promotes integrin clustering and nascent adhesion formation
eLife 11:e72588.
https://doi.org/10.7554/eLife.72588

Share this article

https://doi.org/10.7554/eLife.72588

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.