Abstract

The Tricarboxylic Acid Cycle (TCA) cycle is arguably the most critical metabolic cycle in physiology and exists as an essential interface coordinating cellular metabolism, bioenergetics, and redox homeostasis. Despite decades of research, a comprehensive investigation into the consequences of TCA cycle dysfunction remains elusive. Here, we targeted two TCA cycle enzymes, fumarate hydratase (FH) and succinate dehydrogenase (SDH), and combined metabolomics, transcriptomics, and proteomics analyses to fully appraise the consequences of TCA cycle inhibition (TCAi) in murine kidney epithelial cells. Our comparative approach shows that TCAi elicits a convergent rewiring of redox and amino acid metabolism dependent on the activation of ATF4 and the integrated stress response (ISR). Furthermore, we also uncover a divergent metabolic response, whereby acute FHi, but not SDHi, can maintain asparagine levels via reductive carboxylation and maintenance of cytosolic aspartate synthesis. Our work highlights an important interplay between the TCA cycle, redox biology and amino acid homeostasis.

Data availability

All the transcriptomics. proteomics and uncropped blots data have been deposited in Dryad.

The following data sets were generated
    1. Ryan D
    (2021) Label-free proteomics - thenoyltrifluoroacetone (TTFA)
    Dryad Digital Repository, doi:10.5061/dryad.h44j0zpkt.
    1. Ryan D
    (2021) TruSeq stranded mRNA - Atpenin A5 (AA5)
    Dryad Digital Repository, doi:10.5061/dryad.08kprr536.
    1. Ryan D
    (2021) Western blot uncropped blots
    Dryad Digital Repository, doi:10.5061/dryad.08kprr537.

Article and author information

Author details

  1. Dylan Gerard Ryan

    MRC Cancer Unit, Hutchison MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Ming Yang

    MRC Cancer Unit, Hutchison MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Hiran A Prag

    MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Giovanny Rodriguez Blanco

    Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Efterpi Nikitopoulou

    MRC Cancer Unit, Hutchison MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Marc Segarra-Mondejar

    MRC Cancer Unit, Hutchison MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher A Powell

    MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7501-0586
  8. Tim Young

    MRC Cancer Unit, Hutchison MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1831-3473
  9. Nils Burger

    MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Jan Lj Miljkovic

    MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Michal Minczuk

    MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Michael P Murphy

    MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1115-9618
  13. Alex von Kriegsheim

    Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Christian Frezza

    MRC Cancer Unit, Hutchison MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    cf366@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3293-7397

Funding

Medical Research Council (MRC_MC_UU_12022/6.)

  • Christian Frezza

H2020 European Research Council (ERC819920)

  • Dylan Gerard Ryan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew G Vander Heiden, Massachusetts Institute of Technology, United States

Version history

  1. Preprint posted: July 27, 2021 (view preprint)
  2. Received: July 28, 2021
  3. Accepted: December 21, 2021
  4. Accepted Manuscript published: December 23, 2021 (version 1)
  5. Version of Record published: January 6, 2022 (version 2)
  6. Version of Record updated: February 2, 2022 (version 3)

Copyright

© 2021, Ryan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,842
    views
  • 1,392
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dylan Gerard Ryan
  2. Ming Yang
  3. Hiran A Prag
  4. Giovanny Rodriguez Blanco
  5. Efterpi Nikitopoulou
  6. Marc Segarra-Mondejar
  7. Christopher A Powell
  8. Tim Young
  9. Nils Burger
  10. Jan Lj Miljkovic
  11. Michal Minczuk
  12. Michael P Murphy
  13. Alex von Kriegsheim
  14. Christian Frezza
(2021)
Disruption of the TCA cycle reveals an ATF4-dependent integration of redox and amino acid metabolism
eLife 10:e72593.
https://doi.org/10.7554/eLife.72593

Share this article

https://doi.org/10.7554/eLife.72593

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.