Patient-specific Boolean models of signalling networks guide personalised treatments

  1. Arnau Montagud  Is a corresponding author
  2. Jonas Béal
  3. Luis Tobalina
  4. Pauline Traynard
  5. Vigneshwari Subramanian
  6. Bence Szalai
  7. Róbert Alföldi
  8. László Puskás
  9. Alfonso Valencia
  10. Emmanuel Barillot
  11. Julio Saez-Rodriguez
  12. Laurence Calzone  Is a corresponding author
  1. Barcelona Supercomputing Center (BSC), Spain
  2. Institut Curie, PSL Research University, France
  3. RWTH Aachen University, Germany
  4. Semmelweis University, Hungary
  5. Astridbio Technologies Ltd, Hungary
  6. Heidelberg University, Germany

Abstract

Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell-line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell-line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.

Data availability

Code (and processed data) to reproduce the analyses can be found in a dedicated GitHub (https://github.com/ArnauMontagud/PROFILE_v2), some of the code used in the work can be found in other GitHub repositories (https://github.com/sysbio-curie/PROFILE; https://github.com/sysbio-curie/Logical_modelling_pipeline).The model built can be accessed on the SuppFile1 and on BioModels and GINsim model repositories (https://www.ebi.ac.uk/biomodels/MODEL2106070001; http://ginsim.org/model/signalling-prostate-cancer).

The following previously published data sets were used

Article and author information

Author details

  1. Arnau Montagud

    Barcelona Supercomputing Center (BSC), Barcelona, Spain
    For correspondence
    arnau.montagud@bsc.es
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7696-1241
  2. Jonas Béal

    Institut Curie, PSL Research University, Paris, France
    Competing interests
    No competing interests declared.
  3. Luis Tobalina

    Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany
    Competing interests
    Luis Tobalina, is a full-time employee and shareholder of AstraZeneca..
  4. Pauline Traynard

    Institut Curie, PSL Research University, Paris, France
    Competing interests
    No competing interests declared.
  5. Vigneshwari Subramanian

    Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany
    Competing interests
    Vigneshwari Subramanian, is a full-time employee of AstraZeneca..
  6. Bence Szalai

    Department of Physiology, Semmelweis University, Budapest, Hungary
    Competing interests
    No competing interests declared.
  7. Róbert Alföldi

    Astridbio Technologies Ltd, Szeged, Hungary
    Competing interests
    Róbert Alföldi, is CEO of Astridbio Technologies Ltd..
  8. László Puskás

    Astridbio Technologies Ltd, Szeged, Hungary
    Competing interests
    László Puskás, is a scientific advisor of Astridbio Technologies Ltd..
  9. Alfonso Valencia

    Barcelona Supercomputing Center (BSC), Barcelona, Spain
    Competing interests
    Alfonso Valencia, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8937-6789
  10. Emmanuel Barillot

    Institut Curie, PSL Research University, Paris, France
    Competing interests
    No competing interests declared.
  11. Julio Saez-Rodriguez

    Institute of Computational Biomedicine, Heidelberg University, Heidelberg, Germany
    Competing interests
    Julio Saez-Rodriguez, receives funding from GSK and Sanofi and consultant fees from Travere Therapeutics. The other authors declare no conflicts of interest.-.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8552-8976
  12. Laurence Calzone

    Institut Curie, PSL Research University, Paris, France
    For correspondence
    Laurence.Calzone@curie.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7835-1148

Funding

European Commission (H2020-PHC-668858)

  • Arnau Montagud
  • Jonas Béal
  • Luis Tobalina
  • Pauline Traynard
  • Vigneshwari Subramanian
  • Bence Szalai
  • Róbert Alföldi
  • László Puskás
  • Emmanuel Barillot
  • Julio Saez-Rodriguez
  • Laurence Calzone

European Commission (H2020-ICT-825070)

  • Arnau Montagud
  • Alfonso Valencia

European Commission (H2020-ICT-951773)

  • Arnau Montagud
  • Alfonso Valencia
  • Emmanuel Barillot
  • Julio Saez-Rodriguez
  • Laurence Calzone

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Montagud et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,861
    views
  • 614
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arnau Montagud
  2. Jonas Béal
  3. Luis Tobalina
  4. Pauline Traynard
  5. Vigneshwari Subramanian
  6. Bence Szalai
  7. Róbert Alföldi
  8. László Puskás
  9. Alfonso Valencia
  10. Emmanuel Barillot
  11. Julio Saez-Rodriguez
  12. Laurence Calzone
(2022)
Patient-specific Boolean models of signalling networks guide personalised treatments
eLife 11:e72626.
https://doi.org/10.7554/eLife.72626

Share this article

https://doi.org/10.7554/eLife.72626

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.

    1. Computational and Systems Biology
    Jun Ren, Ying Zhou ... Qiyuan Li
    Research Article

    Manifold-learning is particularly useful to resolve the complex cellular state space from single-cell RNA sequences. While current manifold-learning methods provide insights into cell fate by inferring graph-based trajectory at cell level, challenges remain to retrieve interpretable biology underlying the diverse cellular states. Here, we described MGPfactXMBD, a model-based manifold-learning framework and capable to factorize complex development trajectories into independent bifurcation processes of gene sets, and thus enables trajectory inference based on relevant features. MGPfactXMBD offers a more nuanced understanding of the biological processes underlying cellular trajectories with potential determinants. When bench-tested across 239 datasets, MGPfactXMBD showed advantages in major quantity-control metrics, such as branch division accuracy and trajectory topology, outperforming most established methods. In real datasets, MGPfactXMBD recovered the critical pathways and cell types in microglia development with experimentally valid regulons and markers. Furthermore, MGPfactXMBD discovered evolutionary trajectories of tumor-associated CD8+ T cells and yielded new subtypes of CD8+ T cells with gene expression signatures significantly predictive of the responses to immune checkpoint inhibitor in independent cohorts. In summary, MGPfactXMBD offers a manifold-learning framework in scRNA-seq data which enables feature selection for specific biological processes and contributing to advance our understanding of biological determination of cell fate.