Patient-specific Boolean models of signalling networks guide personalised treatments

  1. Arnau Montagud  Is a corresponding author
  2. Jonas Béal
  3. Luis Tobalina
  4. Pauline Traynard
  5. Vigneshwari Subramanian
  6. Bence Szalai
  7. Róbert Alföldi
  8. László Puskás
  9. Alfonso Valencia
  10. Emmanuel Barillot
  11. Julio Saez-Rodriguez
  12. Laurence Calzone  Is a corresponding author
  1. Barcelona Supercomputing Center (BSC), Spain
  2. Institut Curie, PSL Research University, France
  3. RWTH Aachen University, Germany
  4. Semmelweis University, Hungary
  5. Astridbio Technologies Ltd, Hungary
  6. Heidelberg University, Germany

Abstract

Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell-line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell-line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.

Data availability

Code (and processed data) to reproduce the analyses can be found in a dedicated GitHub (https://github.com/ArnauMontagud/PROFILE_v2), some of the code used in the work can be found in other GitHub repositories (https://github.com/sysbio-curie/PROFILE; https://github.com/sysbio-curie/Logical_modelling_pipeline).The model built can be accessed on the SuppFile1 and on BioModels and GINsim model repositories (https://www.ebi.ac.uk/biomodels/MODEL2106070001; http://ginsim.org/model/signalling-prostate-cancer).

The following previously published data sets were used

Article and author information

Author details

  1. Arnau Montagud

    Barcelona Supercomputing Center (BSC), Barcelona, Spain
    For correspondence
    arnau.montagud@bsc.es
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7696-1241
  2. Jonas Béal

    Institut Curie, PSL Research University, Paris, France
    Competing interests
    No competing interests declared.
  3. Luis Tobalina

    Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany
    Competing interests
    Luis Tobalina, is a full-time employee and shareholder of AstraZeneca..
  4. Pauline Traynard

    Institut Curie, PSL Research University, Paris, France
    Competing interests
    No competing interests declared.
  5. Vigneshwari Subramanian

    Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany
    Competing interests
    Vigneshwari Subramanian, is a full-time employee of AstraZeneca..
  6. Bence Szalai

    Department of Physiology, Semmelweis University, Budapest, Hungary
    Competing interests
    No competing interests declared.
  7. Róbert Alföldi

    Astridbio Technologies Ltd, Szeged, Hungary
    Competing interests
    Róbert Alföldi, is CEO of Astridbio Technologies Ltd..
  8. László Puskás

    Astridbio Technologies Ltd, Szeged, Hungary
    Competing interests
    László Puskás, is a scientific advisor of Astridbio Technologies Ltd..
  9. Alfonso Valencia

    Barcelona Supercomputing Center (BSC), Barcelona, Spain
    Competing interests
    Alfonso Valencia, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8937-6789
  10. Emmanuel Barillot

    Institut Curie, PSL Research University, Paris, France
    Competing interests
    No competing interests declared.
  11. Julio Saez-Rodriguez

    Institute of Computational Biomedicine, Heidelberg University, Heidelberg, Germany
    Competing interests
    Julio Saez-Rodriguez, receives funding from GSK and Sanofi and consultant fees from Travere Therapeutics. The other authors declare no conflicts of interest.-.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8552-8976
  12. Laurence Calzone

    Institut Curie, PSL Research University, Paris, France
    For correspondence
    Laurence.Calzone@curie.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7835-1148

Funding

European Commission (H2020-PHC-668858)

  • Arnau Montagud
  • Jonas Béal
  • Luis Tobalina
  • Pauline Traynard
  • Vigneshwari Subramanian
  • Bence Szalai
  • Róbert Alföldi
  • László Puskás
  • Emmanuel Barillot
  • Julio Saez-Rodriguez
  • Laurence Calzone

European Commission (H2020-ICT-825070)

  • Arnau Montagud
  • Alfonso Valencia

European Commission (H2020-ICT-951773)

  • Arnau Montagud
  • Alfonso Valencia
  • Emmanuel Barillot
  • Julio Saez-Rodriguez
  • Laurence Calzone

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Montagud et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,843
    views
  • 614
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arnau Montagud
  2. Jonas Béal
  3. Luis Tobalina
  4. Pauline Traynard
  5. Vigneshwari Subramanian
  6. Bence Szalai
  7. Róbert Alföldi
  8. László Puskás
  9. Alfonso Valencia
  10. Emmanuel Barillot
  11. Julio Saez-Rodriguez
  12. Laurence Calzone
(2022)
Patient-specific Boolean models of signalling networks guide personalised treatments
eLife 11:e72626.
https://doi.org/10.7554/eLife.72626

Share this article

https://doi.org/10.7554/eLife.72626

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Daniel Hui, Scott Dudek ... Marylyn D Ritchie
    Research Article

    Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.