Intracellular glycosyl hydrolase PslG shapes bacterial cell fate, signaling, and the biofilm development of Pseudomonas aeruginosa
Abstract
Biofilm formation is one of most important causes leading to persistent infections. Exopolysaccharides are usually a main component of biofilm matrix. Genes encoding glycosyl hydrolases are often found in gene clusters that are involved in the exopolysaccharide synthesis. It remains elusive about the functions of intracellular glycosyl hydrolase and why a polysaccharide synthesis gene cluster requires a glycosyl hydrolase-encoding gene. Here we systematically studied the physiologically relevant role of intracellular PslG, a glycosyl hydrolase whose encoding gene is co-transcribed with 15 psl genes, which is responsible for the synthesis of exopolysaccharide PSL, a key biofilm matrix polysaccharide in opportunistic pathogen Pseudomonas aeruginosa. We showed that lack of PslG or its hydrolytic activity in this opportunistic pathogen enhances the signaling function of PSL, changes the relative level of cyclic-di-GMP within daughter cells during cell division and shapes the localization of PSL on bacterial periphery, thus results in long chains of bacterial cells, fast-forming biofilm microcolonies. Our results reveal the important roles of intracellular PslG on the cell fate and biofilm development.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file. Source Data files have been provided for Figure 1,2, 3,4,6, and 7.
Article and author information
Author details
Funding
the National Key R & D of China (2018YFA0902102,2021YFA0909500,2019YFC804104,and 2019YFA0905501)
- Kun Zhao
- Luyan Ma
the National natural science Foundation of China (91951204,21621004,32070033)
- Luyan Ma
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Zhang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,244
- views
-
- 260
- downloads
-
- 7
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 7
- citations for umbrella DOI https://doi.org/10.7554/eLife.72778