Protein Phosphatase 1 in association with Bud14 inhibits mitotic exit in Saccharomyces cerevisiae

Abstract

Mitotic exit in budding yeast is dependent on correct orientation of the mitotic spindle along the cell polarity axis. When accurate positioning of the spindle fails, a surveillance mechanism named the Spindle Position Checkpoint (SPOC) prevents cells from exiting mitosis. Mutants with a defective SPOC become multinucleated and lose their genomic integrity. Yet, a comprehensive understanding of the SPOC mechanism is missing. In this study, we identified the type 1 protein phosphatase, Glc7, in association with its regulatory protein Bud14 as a novel checkpoint component. We further showed that Glc7-Bud14 promotes dephosphorylation of the SPOC effector protein Bfa1. Our results suggest a model in which two mechanisms act in parallel for a robust checkpoint response: first, the SPOC kinase Kin4 isolates Bfa1 away from the inhibitory kinase Cdc5 and second, Glc7-Bud14 dephosphorylates Bfa1 to fully activate the checkpoint effector.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 2A-2C, 3A and 3C, 4B and 4D, 6A-6D, 7G and Figure 2-Figure Supplement 1B-C, Figure 5-Figure Supplement 2A, Figure 6-Figure Supplement 1A-1D, Figure 6-Figure Supplement 2C-2D, Figure 7- Figure supplement 2B

Article and author information

Author details

  1. Dilara Kocakaplan

    Molecular Biology and Genetics, Koç University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  2. Hüseyin Karaburk

    Molecular Biology and Genetics, Koç University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  3. Cansu Dilege

    Molecular Biology and Genetics, Koç University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  4. Idil Kirdök

    Molecular Biology and Genetics, Koç University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  5. Şeyma Nur Bektaş

    Molecular Biology and Genetics, Koç University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  6. Ayse Koca Caydasi

    Molecular Biology and Genetics, Koç University, Istanbul, Turkey
    For correspondence
    aykoca@ku.edu.tr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2570-1367

Funding

EMBO (IG - 3918)

  • Dilara Kocakaplan
  • Ayse Koca Caydasi

TUBITAK (117Z232)

  • Ayse Koca Caydasi

TUBITAK (118Z979)

  • Hüseyin Karaburk
  • Idil Kirdök

European Commission (H2020-MSCA-IF (796599))

  • Ayse Koca Caydasi

ICGEB (IG-No. CRP/TUR17-04_EC)

  • Ayse Koca Caydasi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mohan K Balasubramanian, University of Warwick, United Kingdom

Version history

  1. Preprint posted: August 30, 2020 (view preprint)
  2. Received: August 5, 2021
  3. Accepted: October 8, 2021
  4. Accepted Manuscript published: October 11, 2021 (version 1)
  5. Version of Record published: November 9, 2021 (version 2)

Copyright

© 2021, Kocakaplan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,570
    Page views
  • 221
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dilara Kocakaplan
  2. Hüseyin Karaburk
  3. Cansu Dilege
  4. Idil Kirdök
  5. Şeyma Nur Bektaş
  6. Ayse Koca Caydasi
(2021)
Protein Phosphatase 1 in association with Bud14 inhibits mitotic exit in Saccharomyces cerevisiae
eLife 10:e72833.
https://doi.org/10.7554/eLife.72833

Share this article

https://doi.org/10.7554/eLife.72833

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.