Addition of a carboxy terminal tail to the normally tailless gonadotropin-releasing hormone receptor impairs fertility in female mice

  1. Chirine Toufaily
  2. Jérôme Fortin
  3. Carlos AI Alonso
  4. Evelyne Lapointe
  5. Xiang Zhou
  6. Yorgui Santiago-Andres
  7. Yeu-Farn Lin
  8. Yiming Cui
  9. Ying Wang
  10. Dominic Devost
  11. Ferdinand Roelfsema
  12. Frederik Steyn
  13. Aylin C Hanyaloglu
  14. Terence E Hébert
  15. Tatiana Fiordelisio
  16. Derek Boerboom
  17. Daniel J Bernard  Is a corresponding author
  1. McGill University, Canada
  2. Universite de Montreal, Canada
  3. Universidad Nacional Autónoma de México, Mexico
  4. Leiden University Medical Center, Netherlands
  5. The University of Queensland, Australia
  6. Imperial College London, United Kingdom

Abstract

Gonadotropin-releasing hormone (GnRH) is the primary neuropeptide controlling reproduction in vertebrates. GnRH stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis via a G protein-coupled receptor, GnRHR, in the pituitary gland. In mammals, GnRHR lacks a C-terminal cytosolic tail (Ctail) and does not exhibit homologous desensitization. This might be an evolutionary adaptation that enables LH surge generation and ovulation. To test this idea, we fused the chicken GnRHR Ctail to the endogenous murine GnRHR in a transgenic model. The LH surge was blunted, but not blocked in these mice. In contrast, they showed reductions in FSH production, ovarian follicle development, and fertility. Addition of the Ctail altered the nature of agonist-induced calcium signaling required for normal FSH production. The loss of the GnRHR Ctail during mammalian evolution is unlikely to have conferred a selective advantage by enabling the LH surge. The adaptive significance of this specialization remains to be determined.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Chirine Toufaily

    Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Jérôme Fortin

    Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Carlos AI Alonso

    Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Evelyne Lapointe

    Département de biomédecine vétérinaire, Universite de Montreal, Ste-Hyacinthe, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiang Zhou

    Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Yorgui Santiago-Andres

    Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7343-7746
  7. Yeu-Farn Lin

    Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Yiming Cui

    Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Ying Wang

    Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Dominic Devost

    Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Ferdinand Roelfsema

    Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Frederik Steyn

    School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Aylin C Hanyaloglu

    Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4206-737X
  14. Terence E Hébert

    Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  15. Tatiana Fiordelisio

    3epartamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9282-1476
  16. Derek Boerboom

    Département de biomédecine vétérinaire, Universite de Montreal, Ste-Hyacinthe, Canada
    Competing interests
    The authors declare that no competing interests exist.
  17. Daniel J Bernard

    Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
    For correspondence
    daniel.bernard@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5365-5586

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rajan Dighe, Indian Institute of Science Bangalore, India

Ethics

Animal experimentation: All mouse experiments in Canada were performed in accordance with institutional and federal guidelines and were approved by the McGill University Facility Animal Care Committee (DOW-A; protocol 5204). Mouse studies conducted at the National University of Mexico were performed under an institutional protocol similar to the United States Public Health Service Guide for the Care and Use of Laboratory Animals, and according to the Official Mexican Guide from the Secretary of Agriculture (SAGARPA NOM-062-Z00-1999).

Version history

  1. Received: August 10, 2021
  2. Preprint posted: September 16, 2021 (view preprint)
  3. Accepted: December 6, 2021
  4. Accepted Manuscript published: December 23, 2021 (version 1)
  5. Version of Record published: January 7, 2022 (version 2)

Copyright

© 2021, Toufaily et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 878
    views
  • 142
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chirine Toufaily
  2. Jérôme Fortin
  3. Carlos AI Alonso
  4. Evelyne Lapointe
  5. Xiang Zhou
  6. Yorgui Santiago-Andres
  7. Yeu-Farn Lin
  8. Yiming Cui
  9. Ying Wang
  10. Dominic Devost
  11. Ferdinand Roelfsema
  12. Frederik Steyn
  13. Aylin C Hanyaloglu
  14. Terence E Hébert
  15. Tatiana Fiordelisio
  16. Derek Boerboom
  17. Daniel J Bernard
(2021)
Addition of a carboxy terminal tail to the normally tailless gonadotropin-releasing hormone receptor impairs fertility in female mice
eLife 10:e72937.
https://doi.org/10.7554/eLife.72937

Share this article

https://doi.org/10.7554/eLife.72937

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.