Lipid droplets and ferritin heavy chain: a devilish liaison in human cancer cell radioresistance

  1. Luca Tirinato  Is a corresponding author
  2. Maria Grazia Marafioti
  3. Francesca Pagliari  Is a corresponding author
  4. Jeannette Jansen
  5. Ilenia Aversa
  6. Rachel Hanley
  7. Clelia Nisticò
  8. Daniel Garcia-Calderón
  9. Geraldine Genard
  10. Joana Filipa Guerreiro
  11. Francesco Saverio Costanzo
  12. Joao Seco  Is a corresponding author
  1. Magna Graecia University, Italy
  2. German Cancer Research Center, Germany
  3. University of Lisbon, Portugal
  4. DKFZ - German Cancer Research Center, Germany

Abstract

Although much progress has been made in cancer treatment, the molecular mechanisms underlying cancer radioresistance (RR) as well as the biological signatures of radioresistant cancer cells still need to be clarified. In this regard, we discovered that breast, bladder, lung, neuroglioma and prostate 6 Gy X-ray resistant cancer cells were characterized by an increase of Lipid Droplet (LD) number and that the cells containing highest LDs showed the highest clonogenic potential after irradiation. Moreover, we observed that LD content was tightly connected with the iron metabolism and in particular with the presence of the ferritin heavy chain (FTH1). In fact, breast and lung cancer cells silenced for the FTH1 gene showed a reduction in the LD numbers and, by consequence, became radiosensitive. FTH1 overexpression as well as iron-chelating treatment by Deferoxamine were able to restore the LD amount and RR. Overall, these results provide evidence of a novel mechanism behind RR in which LDs and FTH1 are tightly connected to each other, a synergistic effect which might be worth deeply investigating in order to make cancer cells more radiosensitive and improve the efficacy of radiation treatments.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. All Source data files have been provided.

Article and author information

Author details

  1. Luca Tirinato

    Magna Graecia University, Catanzaro, Italy
    For correspondence
    tirinato@unicz.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9826-2129
  2. Maria Grazia Marafioti

    German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Francesca Pagliari

    German Cancer Research Center, Heidelberg, Germany
    For correspondence
    f.pagliari@dkfz.de
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeannette Jansen

    German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8625-3978
  5. Ilenia Aversa

    German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachel Hanley

    German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2627-1146
  7. Clelia Nisticò

    Magna Graecia University, Catanzaro, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0787-9527
  8. Daniel Garcia-Calderón

    German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Geraldine Genard

    German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9495-0335
  10. Joana Filipa Guerreiro

    University of Lisbon, Lisboa, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1960-603X
  11. Francesco Saverio Costanzo

    Magna Graecia University, Catanzaro, Italy
    Competing interests
    The authors declare that no competing interests exist.
  12. Joao Seco

    DKFZ - German Cancer Research Center, Heidelberg, Germany
    For correspondence
    j.seco@dkfz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9458-2202

Funding

AIRC (800924)

  • Luca Tirinato

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wafik S El-Deiry, Brown University, United States

Version history

  1. Preprint posted: May 13, 2021 (view preprint)
  2. Received: August 12, 2021
  3. Accepted: August 25, 2021
  4. Accepted Manuscript published: September 9, 2021 (version 1)
  5. Accepted Manuscript updated: September 14, 2021 (version 2)
  6. Version of Record published: October 7, 2021 (version 3)

Copyright

© 2021, Tirinato et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,598
    views
  • 321
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luca Tirinato
  2. Maria Grazia Marafioti
  3. Francesca Pagliari
  4. Jeannette Jansen
  5. Ilenia Aversa
  6. Rachel Hanley
  7. Clelia Nisticò
  8. Daniel Garcia-Calderón
  9. Geraldine Genard
  10. Joana Filipa Guerreiro
  11. Francesco Saverio Costanzo
  12. Joao Seco
(2021)
Lipid droplets and ferritin heavy chain: a devilish liaison in human cancer cell radioresistance
eLife 10:e72943.
https://doi.org/10.7554/eLife.72943

Share this article

https://doi.org/10.7554/eLife.72943

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.

    1. Cancer Biology
    2. Epidemiology and Global Health
    Lijun Bian, Zhimin Ma ... Guangfu Jin
    Research Article

    Background:

    Age is the most important risk factor for cancer, but aging rates are heterogeneous across individuals. We explored a new measure of aging-Phenotypic Age (PhenoAge)-in the risk prediction of site-specific and overall cancer.

    Methods:

    Using Cox regression models, we examined the association of Phenotypic Age Acceleration (PhenoAgeAccel) with cancer incidence by genetic risk group among 374,463 participants from the UK Biobank. We generated PhenoAge using chronological age and nine biomarkers, PhenoAgeAccel after subtracting the effect of chronological age by regression residual, and an incidence-weighted overall cancer polygenic risk score (CPRS) based on 20 cancer site-specific polygenic risk scores (PRSs).

    Results:

    Compared with biologically younger participants, those older had a significantly higher risk of overall cancer, with hazard ratios (HRs) of 1.22 (95% confidence interval, 1.18–1.27) in men, and 1.26 (1.22–1.31) in women, respectively. A joint effect of genetic risk and PhenoAgeAccel was observed on overall cancer risk, with HRs of 2.29 (2.10–2.51) for men and 1.94 (1.78–2.11) for women with high genetic risk and older PhenoAge compared with those with low genetic risk and younger PhenoAge. PhenoAgeAccel was negatively associated with the number of healthy lifestyle factors (Beta = –1.01 in men, p<0.001; Beta = –0.98 in women, p<0.001).

    Conclusions:

    Within and across genetic risk groups, older PhenoAge was consistently related to an increased risk of incident cancer with adjustment for chronological age and the aging process could be retarded by adherence to a healthy lifestyle.

    Funding:

    This work was supported by the National Natural Science Foundation of China (82230110, 82125033, 82388102 to GJ; 82273714 to MZ); and the Excellent Youth Foundation of Jiangsu Province (BK20220100 to MZ).