Wild cereal grain consumption among Early Holocene foragers of the Balkans predates the arrival of agriculture

  1. Emanuela Cristiani  Is a corresponding author
  2. Anita Radini
  3. Andrea Zupancich
  4. Angelo Gismondi
  5. Alessia D'Agostino
  6. Claudio Ottoni
  7. Marialetizia Carra
  8. Snežana Vukojičić
  9. Mihai Constantinescu
  10. Dragana Antonović
  11. T Douglas Price
  12. Dušan Borić  Is a corresponding author
  1. Sapienza University of Rome, Italy
  2. University of York, United Kingdom
  3. University of Rome Tor Vergata"", Italy
  4. University of Belgrade, Serbia
  5. Institute for Anthropological Research, Romania
  6. Institute of Archaeology, Serbia
  7. University of Wisconsin, United States

Abstract

Forager focus on wild cereal plants has been documented in the core zone of domestication in southwestern Asia, while evidence for forager use of wild grass grains remains sporadic elsewhere. In this paper, we present starch grain and phytolith analyses of dental calculus from 60 Mesolithic and Early Neolithic individuals from five sites in the Danube Gorges of the central Balkans. This zone was inhabited by likely complex Holocene foragers for several millennia before the appearance of the first farmers ~6200 cal BC. We also analyzed forager ground stone tools for evidence of plant processing. Our results based on the study of dental calculus show that certain species of Poaceae (species of the genus Aegilops) were used since the Early Mesolithic, while ground stone tools exhibit traces of a developed grass grain processing technology. The adoption of domesticated plants in this region after ~6500 cal BC might have been eased by the existing familiarity with wild cereals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Emanuela Cristiani

    DANTE - Diet and Ancient Technology Laboratory, Department of Oral and Maxilla-Facial Sciences, Sapienza University of Rome, Rome, Italy
    For correspondence
    emanuela.cristiani@uniroma1.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2748-9171
  2. Anita Radini

    Department of Archaeology, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrea Zupancich

    DANTE - Diet and Ancient Technology Laboratory, Department of Oral and Maxilla-Facial Sciences, Sapienza University of Rome, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Angelo Gismondi

    Laboratory of General Botany, Department of Biology, University of Rome Tor Vergata"", Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Alessia D'Agostino

    Laboratory of General Botany, Department of Biology, University of Rome Tor Vergata"", Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Claudio Ottoni

    DANTE - Diet and Ancient Technology Laboratory, Department of Oral and Maxilla-Facial Sciences, Sapienza University of Rome, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Marialetizia Carra

    DANTE - Diet and Ancient Technology Laboratory, Department of Oral and Maxilla-Facial Sciences, Sapienza University of Rome, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Snežana Vukojičić

    Faculty of Biology, Institute of Botany and Botanical Garden 'Jevremovac', University of Belgrade, Belgrade, Serbia
    Competing interests
    The authors declare that no competing interests exist.
  9. Mihai Constantinescu

    Institute for Anthropological Research, Bucharest, Romania
    Competing interests
    The authors declare that no competing interests exist.
  10. Dragana Antonović

    Institute of Archaeology, Belgrade, Serbia
    Competing interests
    The authors declare that no competing interests exist.
  11. T Douglas Price

    Department of Anthropology, University of Wisconsin, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Dušan Borić

    Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
    For correspondence
    dusan.boric@uniroma1.it
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 European Research Council (639286)

  • Emanuela Cristiani

National Science Foundation (BCS-0235465)

  • T Douglas Price
  • Dušan Borić

NOMIS Stiftung

  • Dušan Borić

Wellcome Trust (209869_Z_17_Z)

  • Anita Radini

British Academy (SG-42170 and LRG-45589)

  • Dušan Borić

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. George H Perry, Pennsylvania State University, United States

Version history

  1. Received: August 11, 2021
  2. Accepted: November 30, 2021
  3. Accepted Manuscript published: December 1, 2021 (version 1)
  4. Version of Record published: January 21, 2022 (version 2)
  5. Version of Record updated: January 25, 2022 (version 3)

Copyright

© 2021, Cristiani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,049
    views
  • 274
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emanuela Cristiani
  2. Anita Radini
  3. Andrea Zupancich
  4. Angelo Gismondi
  5. Alessia D'Agostino
  6. Claudio Ottoni
  7. Marialetizia Carra
  8. Snežana Vukojičić
  9. Mihai Constantinescu
  10. Dragana Antonović
  11. T Douglas Price
  12. Dušan Borić
(2021)
Wild cereal grain consumption among Early Holocene foragers of the Balkans predates the arrival of agriculture
eLife 10:e72976.
https://doi.org/10.7554/eLife.72976

Share this article

https://doi.org/10.7554/eLife.72976

Further reading

    1. Ecology
    Yang Ruan, Ning Ling ... Zhibiao Nan
    Research Article

    Warming and precipitation anomalies affect terrestrial carbon balance partly through altering microbial eco-physiological processes (e.g., growth and death) in soil. However, little is known about how such processes responds to simultaneous regime shifts in temperature and precipitation. We used the 18O-water quantitative stable isotope probing approach to estimate bacterial growth in alpine meadow soils of the Tibetan Plateau after a decade of warming and altered precipitation manipulation. Our results showed that the growth of major taxa was suppressed by the single and combined effects of temperature and precipitation, eliciting 40–90% of growth reduction of whole community. The antagonistic interactions of warming and altered precipitation on population growth were common (~70% taxa), represented by the weak antagonistic interactions of warming and drought, and the neutralizing effects of warming and wet. The members in Solirubrobacter and Pseudonocardia genera had high growth rates under changed climate regimes. These results are important to understand and predict the soil microbial dynamics in alpine meadow ecosystems suffering from multiple climate change factors.

    1. Ecology
    Anna L Erdei, Aneth B David ... Teun Dekker
    Research Article Updated

    Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push–pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop’s constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatile terpenoids were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Furthermore, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize–Desmodium push–pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.