Parent-of-origin effects propagate through networks to shape metabolic traits

  1. Juan F Macias-Velasco
  2. Celine L St. Pierre
  3. Jessica P Wayhart
  4. Li Yin
  5. Larry Spears
  6. Mario A Miranda
  7. Caryn Carson
  8. Katsuhiko Funai
  9. James Cheverud
  10. Clay F Semenkovich
  11. Heather A Lawson  Is a corresponding author
  1. Washington University in Saint Louis, United States
  2. University of Utah, United States
  3. Loyola University Chicago, United States

Abstract

Parent-of-origin effects are unexpectedly common in complex traits, including metabolic and neurological traits. Parent-of-origin effects can be modified by the environment, but the architecture of these gene-by-environmental effects on phenotypes remains to be unraveled. Previously, quantitative trait loci (QTL) showing context-specific parent-of-origin effects on metabolic traits were mapped in the F16 generation of an advanced intercross between LG/J and SM/J inbred mice. However, these QTL were not enriched for known imprinted genes, suggesting another mechanism is needed to explain these parent-of-origin effects phenomena. We propose that non-imprinted genes can generate complex parent-of-origin effects on metabolic traits through interactions with imprinted genes. Here, we employ data from mouse populations at different levels of intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse lines to test this hypothesis. Using multiple populations and incorporating genetic, genomic, and physiological data, we leverage orthogonal evidence to identify networks of genes through which parent-of-origin effects propagate. We identify a network comprised of 3 imprinted and 6 non-imprinted genes that show parent-of-origin effects. This epistatic network forms a nutritional responsive pathway and the genes comprising it jointly serve cellular functions associated with growth. We focus on 2 genes, Nnat and F2r, whose interaction associates with serum glucose levels across generations in high fat-fed females. Single-cell RNAseq reveals that Nnat expression increases and F2r expression decreases in pre-adipocytes along an adipogenic trajectory, a result that is consistent with our observations in bulk white adipose tissue.

Data availability

Sequencing data are available through the NCBI-SRA under accession code PRJNA753198

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Juan F Macias-Velasco

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2827-4647
  2. Celine L St. Pierre

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5465-6601
  3. Jessica P Wayhart

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Yin

    Department of Medicine, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Larry Spears

    Department of Medicine, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mario A Miranda

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Caryn Carson

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katsuhiko Funai

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. James Cheverud

    Department of Biology, Loyola University Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Clay F Semenkovich

    Department of Medicine, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1163-1871
  11. Heather A Lawson

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    For correspondence
    lawson@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3550-5485

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mouse colony was maintained at the Washington University School of Medicine and all experiments were approved by the Institutional Animal Care and Use Committee in accordance with the National Institutes of Health guidelines for the care and use of laboratory animals. Protocol #20-0384

Copyright

© 2022, Macias-Velasco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,388
    views
  • 215
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan F Macias-Velasco
  2. Celine L St. Pierre
  3. Jessica P Wayhart
  4. Li Yin
  5. Larry Spears
  6. Mario A Miranda
  7. Caryn Carson
  8. Katsuhiko Funai
  9. James Cheverud
  10. Clay F Semenkovich
  11. Heather A Lawson
(2022)
Parent-of-origin effects propagate through networks to shape metabolic traits
eLife 11:e72989.
https://doi.org/10.7554/eLife.72989

Share this article

https://doi.org/10.7554/eLife.72989

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Hanna Tutaj, Katarzyna Tomala ... Ryszard Korona
    Research Article

    The loss of a single chromosome in a diploid organism halves the dosage of many genes and is usually accompanied by a substantial decrease in fitness. We asked whether this decrease simply reflects the joint damage caused by individual gene dosage deficiencies. We measured the fitness effects of single heterozygous gene deletions in yeast and combined them for each chromosome. This predicted a negative growth rate, that is, lethality, for multiple monosomies. However, monosomic strains remained alive and grew as if much (often most) of the damage caused by single mutations had disappeared, revealing an exceptionally large and positive epistatic component of fitness. We looked for functional explanations by analyzing the transcriptomes. There was no evidence of increased (compensatory) gene expression on the monosomic chromosomes. Nor were there signs of the cellular stress response that would be expected if monosomy led to protein destabilization and thus cytotoxicity. Instead, all monosomic strains showed extensive upregulation of genes encoding ribosomal proteins, but in an indiscriminate manner that did not correspond to their altered dosage. This response did not restore the stoichiometry required for efficient biosynthesis, which probably became growth limiting, making all other mutation-induced metabolic defects much less important. In general, the modular structure of the cell leads to an effective fragmentation of the total mutational load. Defects outside the module(s) currently defining fitness lose at least some of their relevance, producing the epiphenomenon of positive interactions between individually negative effects.

    1. Evolutionary Biology
    2. Medicine
    Rion Brattig-Correia, Joana M Almeida ... Paulo Navarro-Costa
    Tools and Resources

    Male germ cells share a common origin across animal species, therefore they likely retain a conserved genetic program that defines their cellular identity. However, the unique evolutionary dynamics of male germ cells coupled with their widespread leaky transcription pose significant obstacles to the identification of the core spermatogenic program. Through network analysis of the spermatocyte transcriptome of vertebrate and invertebrate species, we describe the conserved evolutionary origin of metazoan male germ cells at the molecular level. We estimate the average functional requirement of a metazoan male germ cell to correspond to the expression of approximately 10,000 protein-coding genes, a third of which defines a genetic scaffold of deeply conserved genes that has been retained throughout evolution. Such scaffold contains a set of 79 functional associations between 104 gene expression regulators that represent a core component of the conserved genetic program of metazoan spermatogenesis. By genetically interfering with the acquisition and maintenance of male germ cell identity, we uncover 161 previously unknown spermatogenesis genes and three new potential genetic causes of human infertility. These findings emphasize the importance of evolutionary history on human reproductive disease and establish a cross-species analytical pipeline that can be repurposed to other cell types and pathologies.