Impact of a human gut microbe on Vibrio cholerae host colonization through biofilm enhancement

  1. Kelsey Barrassso
  2. Denise Chac
  3. Meti D Debela
  4. Catherine Geigel
  5. Anjali Steenhaut
  6. Abigail Rivera Seda
  7. Chelsea N Dunmire
  8. Jason B Harris
  9. Regina C Larocque
  10. Firas S Midani
  11. Firdausi Qadri
  12. Jing Yan
  13. Ana A Weil  Is a corresponding author
  14. Wai-Leung Ng  Is a corresponding author
  1. Tufts University School of Medicine, United States
  2. University of Washington, United States
  3. Massachusetts General Hospital, United States
  4. Yale University, United States
  5. Baylor College of Medicine, United States
  6. icddr,b, Bangladesh

Abstract

Recent studies indicate that the human intestinal microbiota could impact the outcome of infection by Vibrio cholerae, the etiological agent of the diarrheal disease cholera. A commensal bacterium, Paracoccus aminovorans, was previously identified in high abundance in stool collected from individuals infected with V. cholerae when compared to stool from uninfected persons. However, if and how P. aminovorans interacts with V. cholerae has not been experimentally determined; moreover, whether any association between this bacterium alters the behaviors of V. cholerae to affect the disease outcome is unclear. Here we show that P. aminovorans and V. cholerae together form dual-species biofilm structure at the air-liquid interface, with previously uncharacterized novel features. Importantly, the presence of P. aminovorans within the murine small intestine enhances V. cholerae colonization in the same niche that is dependent on the Vibrio exopolysaccharide (VPS) and other major components of mature V. cholerae biofilm. These studies illustrate that multi-species biofilm formation is a plausible mechanism used by a gut microbe to increase the virulence of the pathogen, and this interaction may alter outcomes in enteric infections.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-3, 5, 7.

The following previously published data sets were used

Article and author information

Author details

  1. Kelsey Barrassso

    Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Denise Chac

    Department of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Meti D Debela

    Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Catherine Geigel

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anjali Steenhaut

    Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Abigail Rivera Seda

    Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chelsea N Dunmire

    Department of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jason B Harris

    Department of Pediatrics, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Regina C Larocque

    Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Firas S Midani

    Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2473-7758
  11. Firdausi Qadri

    icddr,b, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  12. Jing Yan

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Ana A Weil

    Department of Medicine, University of Washington, Seattle, United States
    For correspondence
    anaweil@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
  14. Wai-Leung Ng

    Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
    For correspondence
    wai-leung.ng@tufts.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8966-6604

Funding

National Institutes of Health (AI121337)

  • Wai-Leung Ng

National Institutes of Health (AI123494)

  • Ana A Weil

National Institutes of Health (DP2GM146253)

  • Jing Yan

National Institutes of Health (R25 GM066567)

  • Abigail Rivera Seda

Burroughs Wellcome Fund (1015763.02)

  • Jing Yan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed at and in accordance with the rules of the Tufts Comparative Medicine Services (CMS), following the guidelines of the American Veterinary Medical Association (AVMA) as well as the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were performed with approval of the Tufts University CMS (Protocol# B 2018-99). Euthanasia was performed in accordance with guidelines provided by the AVMA and was approved by the Tufts CMS.

Human subjects: The previously published study from which Figure 1 is derived from ref (7) received approval from the Ethical Review Committee at the icddr,b and the institutional review boards of Massachusetts General Hospital and the University of Washington. Participants or their guardians provided written informed consent.

Reviewing Editor

  1. Melanie Blokesch, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Version history

  1. Preprint posted: February 2, 2021 (view preprint)
  2. Received: August 12, 2021
  3. Accepted: March 25, 2022
  4. Accepted Manuscript published: March 28, 2022 (version 1)
  5. Accepted Manuscript updated: March 31, 2022 (version 2)
  6. Version of Record published: April 8, 2022 (version 3)

Copyright

© 2022, Barrassso et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,877
    Page views
  • 260
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kelsey Barrassso
  2. Denise Chac
  3. Meti D Debela
  4. Catherine Geigel
  5. Anjali Steenhaut
  6. Abigail Rivera Seda
  7. Chelsea N Dunmire
  8. Jason B Harris
  9. Regina C Larocque
  10. Firas S Midani
  11. Firdausi Qadri
  12. Jing Yan
  13. Ana A Weil
  14. Wai-Leung Ng
(2022)
Impact of a human gut microbe on Vibrio cholerae host colonization through biofilm enhancement
eLife 11:e73010.
https://doi.org/10.7554/eLife.73010

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Valentin Wernet, Marius Kriegler ... Reinhard Fischer
    Research Article Updated

    Communication is crucial for organismic interactions, from bacteria, to fungi, to humans. Humans may use the visual sense to monitor the environment before starting acoustic interactions. In comparison, fungi, lacking a visual system, rely on a cell-to-cell dialogue based on secreted signaling molecules to coordinate cell fusion and establish hyphal networks. Within this dialogue, hyphae alternate between sending and receiving signals. This pattern can be visualized via the putative signaling protein Soft (SofT), and the mitogen-activated protein kinase MAK-2 (MakB) which are recruited in an alternating oscillatory manner to the respective cytoplasmic membrane or nuclei of interacting hyphae. Here, we show that signal oscillations already occur in single hyphae of Arthrobotrys flagrans in the absence of potential fusion partners (cell monologue). They were in the same phase as growth oscillations. In contrast to the anti-phasic oscillations observed during the cell dialogue, SofT and MakB displayed synchronized oscillations in phase during the monologue. Once two fusion partners came into each other’s vicinity, their oscillation frequencies slowed down (entrainment phase) and transit into anti-phasic synchronization of the two cells’ oscillations with frequencies of 104±28 s and 117±19 s, respectively. Single-cell oscillations, transient entrainment, and anti-phasic oscillations were reproduced by a mathematical model where nearby hyphae can absorb and secrete a limited molecular signaling component into a shared extracellular space. We show that intracellular Ca2+ concentrations oscillate in two approaching hyphae, and depletion of Ca2+ from the medium affected vesicle-driven extension of the hyphal tip, abolished the cell monologue and the anti-phasic synchronization of two hyphae. Our results suggest that single hyphae engage in a ‘monologue’ that may be used for exploration of the environment and can dynamically shift their extracellular signaling systems into a ‘dialogue’ to initiate hyphal fusion.

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Juan Xiang, Chaoyang Fan ... Pei Xu
    Research Article Updated

    The relative positions of viral DNA genomes to the host intranuclear environment play critical roles in determining virus fate. Recent advances in the application of chromosome conformation capture-based sequencing analysis (3 C technologies) have revealed valuable aspects of the spatiotemporal interplay of viral genomes with host chromosomes. However, to elucidate the causal relationship between the subnuclear localization of viral genomes and the pathogenic outcome of an infection, manipulative tools are needed. Rapid repositioning of viral DNAs to specific subnuclear compartments amid infection is a powerful approach to synchronize and interrogate this dynamically changing process in space and time. Herein, we report an inducible CRISPR-based two-component platform that relocates extrachromosomal DNA pieces (5 kb to 170 kb) to the nuclear periphery in minutes (CRISPR-nuPin). Based on this strategy, investigations of herpes simplex virus 1 (HSV-1), a prototypical member of the human herpesvirus family, revealed unprecedently reported insights into the early intranuclear life of the pathogen: (I) Viral genomes tethered to the nuclear periphery upon entry, compared with those freely infecting the nucleus, were wrapped around histones with increased suppressive modifications and subjected to stronger transcriptional silencing and prominent growth inhibition. (II) Relocating HSV-1 genomes at 1 hr post infection significantly promoted the transcription of viral genes, termed an ‘Escaping’ effect. (III) Early accumulation of ICP0 was a sufficient but not necessary condition for ‘Escaping’. (IV) Subnuclear localization was only critical during early infection. Importantly, the CRISPR-nuPin tactic, in principle, is applicable to many other DNA viruses.