Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals

  1. Munenori Ishibashi
  2. Joyce Keung
  3. Catherine W Morgans
  4. Sue A Aicher
  5. James R Carroll
  6. Joshua H Singer
  7. Li Jia
  8. Wei Li
  9. Iris Fahrenfort
  10. Christophe P Ribelayga  Is a corresponding author
  11. Stephen C Massey  Is a corresponding author
  1. University of Texas at Houston, United States
  2. Oregon Health & Science University, United States
  3. University of Maryland, College Park, United States
  4. National Eye Institute, National Institutes of Health, United States

Abstract

This project was inspired by the paper from Behrens et al (2016) who used e2006 to reconstruct bipolar cells. We thank Christian Behrens, Timm Schubert, Philipp Berens and Thomas Euler (University of Tübingen) for generously sharing data on blue cone bipolar cells. We thank Moritz Helmstaedter (MPI, Frankfurt) for hosting the e2006 dataset. We thank Kiril Martemyanov (Scripps research Institute, Jupiter, Florida) for the generous gift of an mGluR6 antbody. We thank David Berson (Brown University), for advice, encouragement and an introduction to connectomics. We thank Jessica Riesterer at the Multiscale Microscopy Core, an OHSU University Shared Resource core facility, for acquiring the FIB-SEM datasets. We thank Alice Chuang (Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School) for statistical analysis.

Data availability

All the data used to create the figures in the manuscript have been provided as source data files for Figures 2, 3, 4, 5 and 8.The following data sets were generated.Ishibashi M, Keung J, Ribelayga CP, Massey SC (2018) Confocal imaging of the outer plexiform layer in mouse retina. Collection ID: 30675648bee2309e, URL: https://download.brainimagelibrary.org/30/67/30675648bee2309e/In the public domain at BIL http://www.brainimagelibrary.org/index.htmlSinger JH (2018) SBF-SEM of mouse retina. eel001. URL: https://wklink.org/9712In the public domain at webKnossos https://webknossos.org/Morgan CW, Aicher SA, Carroll JR (2019) FIB-SEM of the outer plexiform layer in light-adapted mouse retina. EM1 and EM2, URL: https://bossdb.org/project/ishibashi2021In the public domain at BossDB https://bossdb.org/

The following previously published data sets were used

Article and author information

Author details

  1. Munenori Ishibashi

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6922-573X
  2. Joyce Keung

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Catherine W Morgans

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sue A Aicher

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James R Carroll

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9264-4502
  6. Joshua H Singer

    Department of Biology, University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0561-2247
  7. Li Jia

    Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wei Li

    Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2897-649X
  9. Iris Fahrenfort

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Christophe P Ribelayga

    Department of Vision Sciences, University of Texas at Houston, Houston, United States
    For correspondence
    christophe.p.ribelayga@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5889-2070
  11. Stephen C Massey

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    For correspondence
    steve.massey@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0224-6031

Funding

National Institute of Mental Health (RF1MH127343)

  • Catherine W Morgans
  • Sue A Aicher
  • Christophe P Ribelayga
  • Stephen C Massey

National Eye Institute (EY029408)

  • Christophe P Ribelayga
  • Stephen C Massey

National Eye Institute (EY017836)

  • Joshua H Singer

National Institute of Neurological Disorders and Stroke (P30NS061800)

  • Sue A Aicher

National Eye Institute (P30EY028102)

  • Stephen C Massey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Fred Rieke, University of Washington, United States

Ethics

Animal experimentation: All animal procedures were reviewed and approved by the Animal Welfare Committee at the University of Texas Health Science Center at Houston (AWC-20-0138) or by our collaborators' local Institutional Animal Care and Use Committees.

Version history

  1. Received: August 13, 2021
  2. Preprint posted: September 6, 2021 (view preprint)
  3. Accepted: April 25, 2022
  4. Accepted Manuscript published: April 26, 2022 (version 1)
  5. Accepted Manuscript updated: April 27, 2022 (version 2)
  6. Version of Record published: June 6, 2022 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,984
    Page views
  • 437
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Munenori Ishibashi
  2. Joyce Keung
  3. Catherine W Morgans
  4. Sue A Aicher
  5. James R Carroll
  6. Joshua H Singer
  7. Li Jia
  8. Wei Li
  9. Iris Fahrenfort
  10. Christophe P Ribelayga
  11. Stephen C Massey
(2022)
Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals
eLife 11:e73039.
https://doi.org/10.7554/eLife.73039

Share this article

https://doi.org/10.7554/eLife.73039

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.