Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals

  1. Munenori Ishibashi
  2. Joyce Keung
  3. Catherine W Morgans
  4. Sue A Aicher
  5. James R Carroll
  6. Joshua H Singer
  7. Li Jia
  8. Wei Li
  9. Iris Fahrenfort
  10. Christophe P Ribelayga  Is a corresponding author
  11. Stephen C Massey  Is a corresponding author
  1. University of Texas at Houston, United States
  2. Oregon Health & Science University, United States
  3. University of Maryland, College Park, United States
  4. National Eye Institute, National Institutes of Health, United States

Abstract

Electrical coupling, mediated by gap junctions, contributes to signal averaging, synchronization and noise reduction in neuronal circuits. In addition, gap junctions may also provide alternative neuronal pathways. However, because they are small and especially difficult to image, gap junctions are often ignored in large-scale 3D reconstructions. Here, we reconstruct gap junctions between photoreceptors in the mouse retina, using serial blockface-scanning electron microscopy (SBF-SEM), focused ion beam-scanning electron microscopy (FIB-SEM), and confocal microscopy for the gap junction protein Cx36. An exuberant spray of fine telodendria extends from each cone pedicle (including blue cones) to contact 40-50 nearby rod spherules at sites of Cx36 labeling, with approximately 50 Cx36 clusters per cone pedicle and 2-3 per rod spherule. We were unable to detect rod/rod or cone/cone coupling. Thus, rod/cone coupling accounts for nearly all gap junctions between photoreceptors. We estimate a mean of 86 Cx36 channels per rod/cone pair, which may provide a maximum conductance of ~ 1200 pS, if all gap junction channels were open. This is comparable to the maximum conductance previously measured between rod/cone pairs in the presence of a dopamine antagonist to activate Cx36, suggesting the open probability of gap junction channels can approach 100% under certain conditions.

Data availability

All the data used to create the figures in the manuscript have been provided as source data files for Figures 2, 3, 4, 5 and 8.The following data sets were generated.Ishibashi M, Keung J, Ribelayga CP, Massey SC (2018) Confocal imaging of the outer plexiform layer in mouse retina. Collection ID: 30675648bee2309e, URL: https://download.brainimagelibrary.org/30/67/30675648bee2309e/In the public domain at BIL http://www.brainimagelibrary.org/index.htmlSinger JH (2018) SBF-SEM of mouse retina. eel001. URL: https://wklink.org/9712In the public domain at webKnossos https://webknossos.org/Morgan CW, Aicher SA, Carroll JR (2019) FIB-SEM of the outer plexiform layer in light-adapted mouse retina. EM1 and EM2, URL: https://bossdb.org/project/ishibashi2021In the public domain at BossDB https://bossdb.org/

The following previously published data sets were used

Article and author information

Author details

  1. Munenori Ishibashi

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6922-573X
  2. Joyce Keung

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Catherine W Morgans

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sue A Aicher

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James R Carroll

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9264-4502
  6. Joshua H Singer

    Department of Biology, University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0561-2247
  7. Li Jia

    Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wei Li

    Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2897-649X
  9. Iris Fahrenfort

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Christophe P Ribelayga

    Department of Vision Sciences, University of Texas at Houston, Houston, United States
    For correspondence
    christophe.p.ribelayga@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5889-2070
  11. Stephen C Massey

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    For correspondence
    steve.massey@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0224-6031

Funding

National Institute of Mental Health (RF1MH127343)

  • Catherine W Morgans
  • Sue A Aicher
  • Christophe P Ribelayga
  • Stephen C Massey

National Eye Institute (EY029408)

  • Christophe P Ribelayga
  • Stephen C Massey

National Eye Institute (EY017836)

  • Joshua H Singer

National Institute of Neurological Disorders and Stroke (P30NS061800)

  • Sue A Aicher

National Eye Institute (P30EY028102)

  • Stephen C Massey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were reviewed and approved by the Animal Welfare Committee at the University of Texas Health Science Center at Houston (AWC-20-0138) or by our collaborators' local Institutional Animal Care and Use Committees.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,418
    views
  • 485
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Munenori Ishibashi
  2. Joyce Keung
  3. Catherine W Morgans
  4. Sue A Aicher
  5. James R Carroll
  6. Joshua H Singer
  7. Li Jia
  8. Wei Li
  9. Iris Fahrenfort
  10. Christophe P Ribelayga
  11. Stephen C Massey
(2022)
Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals
eLife 11:e73039.
https://doi.org/10.7554/eLife.73039

Share this article

https://doi.org/10.7554/eLife.73039

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.