Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals

  1. Munenori Ishibashi
  2. Joyce Keung
  3. Catherine W Morgans
  4. Sue A Aicher
  5. James R Carroll
  6. Joshua H Singer
  7. Li Jia
  8. Wei Li
  9. Iris Fahrenfort
  10. Christophe P Ribelayga  Is a corresponding author
  11. Stephen C Massey  Is a corresponding author
  1. University of Texas at Houston, United States
  2. Oregon Health & Science University, United States
  3. University of Maryland, College Park, United States
  4. National Eye Institute, National Institutes of Health, United States

Abstract

Electrical coupling, mediated by gap junctions, contributes to signal averaging, synchronization and noise reduction in neuronal circuits. In addition, gap junctions may also provide alternative neuronal pathways. However, because they are small and especially difficult to image, gap junctions are often ignored in large-scale 3D reconstructions. Here, we reconstruct gap junctions between photoreceptors in the mouse retina, using serial blockface-scanning electron microscopy (SBF-SEM), focused ion beam-scanning electron microscopy (FIB-SEM), and confocal microscopy for the gap junction protein Cx36. An exuberant spray of fine telodendria extends from each cone pedicle (including blue cones) to contact 40-50 nearby rod spherules at sites of Cx36 labeling, with approximately 50 Cx36 clusters per cone pedicle and 2-3 per rod spherule. We were unable to detect rod/rod or cone/cone coupling. Thus, rod/cone coupling accounts for nearly all gap junctions between photoreceptors. We estimate a mean of 86 Cx36 channels per rod/cone pair, which may provide a maximum conductance of ~ 1200 pS, if all gap junction channels were open. This is comparable to the maximum conductance previously measured between rod/cone pairs in the presence of a dopamine antagonist to activate Cx36, suggesting the open probability of gap junction channels can approach 100% under certain conditions.

Data availability

All the data used to create the figures in the manuscript have been provided as source data files for Figures 2, 3, 4, 5 and 8.The following data sets were generated.Ishibashi M, Keung J, Ribelayga CP, Massey SC (2018) Confocal imaging of the outer plexiform layer in mouse retina. Collection ID: 30675648bee2309e, URL: https://download.brainimagelibrary.org/30/67/30675648bee2309e/In the public domain at BIL http://www.brainimagelibrary.org/index.htmlSinger JH (2018) SBF-SEM of mouse retina. eel001. URL: https://wklink.org/9712In the public domain at webKnossos https://webknossos.org/Morgan CW, Aicher SA, Carroll JR (2019) FIB-SEM of the outer plexiform layer in light-adapted mouse retina. EM1 and EM2, URL: https://bossdb.org/project/ishibashi2021In the public domain at BossDB https://bossdb.org/

The following previously published data sets were used

Article and author information

Author details

  1. Munenori Ishibashi

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6922-573X
  2. Joyce Keung

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Catherine W Morgans

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sue A Aicher

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James R Carroll

    Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9264-4502
  6. Joshua H Singer

    Department of Biology, University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0561-2247
  7. Li Jia

    Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wei Li

    Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2897-649X
  9. Iris Fahrenfort

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Christophe P Ribelayga

    Department of Vision Sciences, University of Texas at Houston, Houston, United States
    For correspondence
    christophe.p.ribelayga@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5889-2070
  11. Stephen C Massey

    Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, United States
    For correspondence
    steve.massey@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0224-6031

Funding

National Institute of Mental Health (RF1MH127343)

  • Catherine W Morgans
  • Sue A Aicher
  • Christophe P Ribelayga
  • Stephen C Massey

National Eye Institute (EY029408)

  • Christophe P Ribelayga
  • Stephen C Massey

National Eye Institute (EY017836)

  • Joshua H Singer

National Institute of Neurological Disorders and Stroke (P30NS061800)

  • Sue A Aicher

National Eye Institute (P30EY028102)

  • Stephen C Massey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were reviewed and approved by the Animal Welfare Committee at the University of Texas Health Science Center at Houston (AWC-20-0138) or by our collaborators' local Institutional Animal Care and Use Committees.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,364
    views
  • 482
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Munenori Ishibashi
  2. Joyce Keung
  3. Catherine W Morgans
  4. Sue A Aicher
  5. James R Carroll
  6. Joshua H Singer
  7. Li Jia
  8. Wei Li
  9. Iris Fahrenfort
  10. Christophe P Ribelayga
  11. Stephen C Massey
(2022)
Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals
eLife 11:e73039.
https://doi.org/10.7554/eLife.73039

Share this article

https://doi.org/10.7554/eLife.73039

Further reading

    1. Neuroscience
    Anne L Willems, Lukas Van Oudenhove, Bram Vervliet
    Research Article

    The unexpected absence of danger constitutes a pleasurable event that is critical for the learning of safety. Accumulating evidence points to similarities between the processing of absent threat and the well-established reward prediction error (PE). However, clear-cut evidence for this analogy in humans is scarce. In line with recent animal data, we showed that the unexpected omission of (painful) electrical stimulation triggers activations within key regions of the reward and salience pathways and that these activations correlate with the pleasantness of the reported relief. Furthermore, by parametrically violating participants’ probability and intensity related expectations of the upcoming stimulation, we showed for the first time in humans that omission-related activations in the VTA/SN were stronger following omissions of more probable and intense stimulations, like a positive reward PE signal. Together, our findings provide additional support for an overlap in the neural processing of absent danger and rewards in humans.

    1. Neuroscience
    Changrun Huang, Dirk van Moorselaar ... Jan Theeuwes
    Research Article

    Attentional capture by an irrelevant salient distractor is attenuated when the distractor appears more frequently in one location, suggesting learned suppression of that location. However, it remains unclear whether suppression is proactive (before attention is directed) or reactive (after attention is allocated). Here, we investigated this using a ‘pinging’ technique to probe the attentional distribution before search onset. In an EEG experiment, participants searched for a shape singleton while ignoring a color singleton distractor at a high-probability location. To reveal the hidden attentional priority map, participants also performed a continuous recall spatial memory task, with a neutral placeholder display presented before search onset. Behaviorally, search was more efficient when the distractor appeared at the high-probability location. Inverted encoding analysis of EEG data showed tuning profiles that decayed during memory maintenance but were revived by the placeholder display. Notably, tuning was most pronounced at the to-be-suppressed location, suggesting initial spatial selection followed by suppression. These findings suggest that learned distractor suppression is a reactive process, providing new insights into learned spatial distractor suppression mechanisms.