Inflammatory response in hematopoietic stem and progenitor cells triggered by activating SHP2 mutations evokes blood defects

  1. Maja Solman
  2. Sasja Blokzijl-Franke
  3. Florian Piques
  4. Chuan Yan
  5. Qiqi Yang
  6. Marion Strullu
  7. Sarah M Kamel
  8. Pakize Ak
  9. Jeroen Bakkers
  10. David M Langenau
  11. Helene Cave
  12. Jeroen den Hertog  Is a corresponding author
  1. Hubrecht Institute-KNAW, Netherlands
  2. Hôpital Robert Debré, France
  3. Massachusetts General Hospital, United States
  4. University Medical Center Utrecht, Netherlands

Abstract

Gain-of-function mutations in the protein-tyrosine phosphatase SHP2 are the most frequently occurring mutations in sporadic juvenile myelomonocytic leukemia (JMML) and JMML-like myeloproliferative neoplasm (MPN) associated with Noonan syndrome (NS). Hematopoietic stem and progenitor cells (HSPCs) are the disease propagating cells of JMML. Here, we explored transcriptomes of HSPCs with Shp2 mutations derived from JMML patients and a novel NS zebrafish model. In addition to major NS traits, CRISPR/Cas9 knock-in Shp2D61G mutant zebrafish recapitulated a JMML-like MPN phenotype, including myeloid lineage hyperproliferation, ex vivo growth of myeloid colonies and in vivo transplantability of HSPCs. Single cell mRNA sequencing of HSPCs from Shp2D61G zebrafish embryos and bulk sequencing of HSPCs from JMML patients revealed an overlapping inflammatory gene expression pattern. Strikingly, an anti-inflammatory agent rescued JMML-like MPN in Shp2D61G zebrafish embryos. Our results indicate that a common inflammatory response was triggered in the HSPCs from sporadic JMML patients and syndromic NS zebrafish, which potentiated MPN and may represent a future target for JMML therapies.

Data availability

Sequencing data has been deposited to GEO under accession codes GSE167787 and GSE183252Figure 1-Source Data 1, Figure 3-Source Data 1 and Figure 5-Source Data 1-3 contain the source data for the respective figures

The following data sets were generated

Article and author information

Author details

  1. Maja Solman

    Hubrecht Institute-KNAW, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Sasja Blokzijl-Franke

    Hubrecht Institute-KNAW, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Florian Piques

    Hôpital Robert Debré, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Chuan Yan

    Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qiqi Yang

    Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Marion Strullu

    Hôpital Robert Debré, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah M Kamel

    Hubrecht Institute-KNAW, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4424-9732
  8. Pakize Ak

    Hubrecht Institute-KNAW, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Jeroen Bakkers

    Cardiac Development and Genetics, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9418-0422
  10. David M Langenau

    Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6664-8318
  11. Helene Cave

    Hôpital Robert Debré, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2840-1511
  12. Jeroen den Hertog

    Hubrecht Institute-KNAW, Utrecht, Netherlands
    For correspondence
    j.denhertog@hubrecht.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8642-8088

Funding

European Commission (ERARE NSEURONET)

  • Jeroen den Hertog

European Commission (EJPRD NSEURONET)

  • Helene Cave

European Commission (EJPRD NSEURONET)

  • Jeroen den Hertog

KWF Kankerbestrijding (12829)

  • Jeroen den Hertog

NIH Office of the Director (R01CA211734)

  • David M Langenau

NIH Office of the Director (R24OD016761)

  • David M Langenau

European Commission (ERARE NSEURONET)

  • Helene Cave

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving experimental animals were approved by the animal experiments committee of the Royal Netherlands Academy of Arts and Sciences (KNAW), Dierexperimenten commissie protocol HI18-0702, and performed under the local guidelines in compliance with national and European law.

Human subjects: All children's samples were obtained after parents had given their written informed consent. Experiments were approved by the institutional review board of the French Institute of Health and Medical Research (INSERM) (IORG0003254) in accordance with the Helsinki declaration. Healthy children bone marrows were obtained from intrafamilial BM transplantation donors and used with the approval of the Institutional Review Board of "Hôpitaux Universitaires Paris Nord Val-de-Seine," Paris 7 University, AP-HP), (IRB: 00006477), in accordance with the Helsinki declaration.

Copyright

© 2022, Solman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,619
    views
  • 255
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maja Solman
  2. Sasja Blokzijl-Franke
  3. Florian Piques
  4. Chuan Yan
  5. Qiqi Yang
  6. Marion Strullu
  7. Sarah M Kamel
  8. Pakize Ak
  9. Jeroen Bakkers
  10. David M Langenau
  11. Helene Cave
  12. Jeroen den Hertog
(2022)
Inflammatory response in hematopoietic stem and progenitor cells triggered by activating SHP2 mutations evokes blood defects
eLife 11:e73040.
https://doi.org/10.7554/eLife.73040

Share this article

https://doi.org/10.7554/eLife.73040

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.