Bidirectional synaptic plasticity rapidly modifies hippocampal representations

  1. Aaron D Milstein
  2. Yiding Li
  3. Katie C Bittner
  4. Christine Grienberger
  5. Ivan Soltesz
  6. Jeffrey C Magee  Is a corresponding author
  7. Sandro Romani  Is a corresponding author
  1. Rutgers, The State University of New Jersey, United States
  2. Howard Hughes Medical Institute, Baylor College of Medicine, United States
  3. Howard Hughes Medical Institute, United States
  4. Stanford University, United States

Abstract

Learning requires neural adaptations thought to be mediated by activity-dependent synaptic plasticity. A relatively non-standard form of synaptic plasticity driven by dendritic calcium spikes, or plateau potentials, has been reported to underlie place field formation in rodent hippocampal CA1 neurons. Here we found that this behavioral timescale synaptic plasticity (BTSP) can also reshape existing place fields via bidirectional synaptic weight changes that depend on the temporal proximity of plateau potentials to pre-existing place fields. When evoked near an existing place field, plateau potentials induced less synaptic potentiation and more depression, suggesting BTSP might depend inversely on postsynaptic activation. However, manipulations of place cell membrane potential and computational modeling indicated that this anti-correlation actually results from a dependence on current synaptic weight such that weak inputs potentiate and strong inputs depress. A network model implementing this bidirectional synaptic learning rule suggested that BTSP enables population activity, rather than pairwise neuronal correlations, to drive neural adaptations to experience.

Data availability

The complete dataset, Python code for data analysis and model simulation, and additional MATLAB and Igor analysis scripts are available at https://github.com/neurosutras/BTSP.

The following data sets were generated

Article and author information

Author details

  1. Aaron D Milstein

    Department of Neuroscience and Cell Biology, Rutgers, The State University of New Jersey, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7186-5779
  2. Yiding Li

    Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Katie C Bittner

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christine Grienberger

    Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ivan Soltesz

    Department of Neurosurgery, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jeffrey C Magee

    Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
    For correspondence
    jcmagee@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Sandro Romani

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    romanis@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4727-4207

Funding

National Institutes of Health (U19NS104590)

  • Aaron D Milstein
  • Ivan Soltesz

National Institute of Mental Health (R01MH121979)

  • Aaron D Milstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Katalin Toth, University of Ottawa, Canada

Ethics

Animal experimentation: All experimental methods were approved by the Janelia or Baylor College of Medicine Institutional Animal Care and Use Committees (Protocol 12-84 & 15-126).

Version history

  1. Preprint posted: February 5, 2020 (view preprint)
  2. Received: August 13, 2021
  3. Accepted: December 8, 2021
  4. Accepted Manuscript published: December 9, 2021 (version 1)
  5. Accepted Manuscript updated: December 10, 2021 (version 2)
  6. Version of Record published: January 20, 2022 (version 3)

Copyright

© 2021, Milstein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,668
    Page views
  • 815
    Downloads
  • 37
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aaron D Milstein
  2. Yiding Li
  3. Katie C Bittner
  4. Christine Grienberger
  5. Ivan Soltesz
  6. Jeffrey C Magee
  7. Sandro Romani
(2021)
Bidirectional synaptic plasticity rapidly modifies hippocampal representations
eLife 10:e73046.
https://doi.org/10.7554/eLife.73046

Share this article

https://doi.org/10.7554/eLife.73046

Further reading

    1. Neuroscience
    Katharina Eichler, Stefanie Hampel ... Andrew M Seeds
    Research Advance

    Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.