How the insect central complex could coordinate multimodal navigation

  1. Xuelong Sun  Is a corresponding author
  2. Shigang Yue  Is a corresponding author
  3. Michael Mangan  Is a corresponding author
  1. Guangzhou University, China
  2. University of Lincoln, United Kingdom
  3. University of Sheffield, United Kingdom

Abstract

The central complex of the insect midbrain is thought to coordinate insect guidance strategies. Computational models can account for specific behaviours but their applicability across sensory and task domains remains untested. Here we assess the capacity of our previous model (Sun et al., 2020) of visual navigation to generalise to olfactory navigation and its coordination with other guidance in flies and ants. We show that fundamental to this capacity is the use of a biologically-plausible neural copy-and-shift mechanism that ensures sensory information is presented in a format compatible with the insect steering circuit regardless of its source. Moreover, the same mechanism is shown to allow the transfer cues from unstable/egocentric to stable/geocentric frames of reference providing a first account of the mechanism by which foraging insects robustly recover from environmental disturbances. We propose that these circuits can be flexibly repurposed by different insect navigators to address their unique ecological needs.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code is uploaded as Source Code File and is also available via Github (https://github.com/XuelongSun/insectNavigationCX).

The following data sets were generated

Article and author information

Author details

  1. Xuelong Sun

    Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
    For correspondence
    xsun@lincoln.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9035-5523
  2. Shigang Yue

    Computational Intelligence Lab and L-CAS, School of Computer Science, University of Lincoln, Lincoln, United Kingdom
    For correspondence
    syue@lincoln.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Mangan

    Sheffield Robotics, Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    m.mangan@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

EU Horizon 2020 Framework Program (ULTRACEPT 778062)

  • Xuelong Sun
  • Shigang Yue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Preprint posted: August 19, 2021 (view preprint)
  2. Received: August 20, 2021
  3. Accepted: December 8, 2021
  4. Accepted Manuscript published: December 9, 2021 (version 1)
  5. Version of Record published: January 7, 2022 (version 2)

Copyright

© 2021, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,016
    Page views
  • 201
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xuelong Sun
  2. Shigang Yue
  3. Michael Mangan
(2021)
How the insect central complex could coordinate multimodal navigation
eLife 10:e73077.
https://doi.org/10.7554/eLife.73077

Share this article

https://doi.org/10.7554/eLife.73077

Further reading

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Arthur L Schneider, Rita Martins-Silva ... Nuno L Barbosa-Morais
    Tools and Resources

    We herein introduce voyAGEr, an online graphical interface to explore age-related gene expression alterations in 49 human tissues. voyAGEr offers a visualisation and statistical toolkit for the finding and functional exploration of sex- and tissue-specific transcriptomic changes with age. In its conception, we developed a novel bioinformatics pipeline leveraging RNA sequencing data, from the GTEx project, encompassing more than 900 individuals. voyAGEr reveals transcriptomic signatures of the known asynchronous ageing between tissues, allowing the observation of tissue-specific age periods of major transcriptional changes, associated with alterations in different biological pathways, cellular composition, and disease conditions. Notably, voyAGEr was created to assist researchers with no expertise in bioinformatics, providing a supportive framework for elaborating, testing and refining their hypotheses on the molecular nature of human ageing and its association with pathologies, thereby also aiding in the discovery of novel therapeutic targets. voyAGEr is freely available at https://compbio.imm.medicina.ulisboa.pt/app/voyAGEr.

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.