How the insect central complex could coordinate multimodal navigation

  1. Xuelong Sun  Is a corresponding author
  2. Shigang Yue  Is a corresponding author
  3. Michael Mangan  Is a corresponding author
  1. Guangzhou University, China
  2. University of Lincoln, United Kingdom
  3. University of Sheffield, United Kingdom

Abstract

The central complex of the insect midbrain is thought to coordinate insect guidance strategies. Computational models can account for specific behaviours but their applicability across sensory and task domains remains untested. Here we assess the capacity of our previous model (Sun et al., 2020) of visual navigation to generalise to olfactory navigation and its coordination with other guidance in flies and ants. We show that fundamental to this capacity is the use of a biologically-plausible neural copy-and-shift mechanism that ensures sensory information is presented in a format compatible with the insect steering circuit regardless of its source. Moreover, the same mechanism is shown to allow the transfer cues from unstable/egocentric to stable/geocentric frames of reference providing a first account of the mechanism by which foraging insects robustly recover from environmental disturbances. We propose that these circuits can be flexibly repurposed by different insect navigators to address their unique ecological needs.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code is uploaded as Source Code File and is also available via Github (https://github.com/XuelongSun/insectNavigationCX).

The following data sets were generated

Article and author information

Author details

  1. Xuelong Sun

    Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
    For correspondence
    xsun@lincoln.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9035-5523
  2. Shigang Yue

    Computational Intelligence Lab and L-CAS, School of Computer Science, University of Lincoln, Lincoln, United Kingdom
    For correspondence
    syue@lincoln.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Mangan

    Sheffield Robotics, Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    m.mangan@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

EU Horizon 2020 Framework Program (ULTRACEPT 778062)

  • Xuelong Sun
  • Shigang Yue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,199
    views
  • 246
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xuelong Sun
  2. Shigang Yue
  3. Michael Mangan
(2021)
How the insect central complex could coordinate multimodal navigation
eLife 10:e73077.
https://doi.org/10.7554/eLife.73077

Share this article

https://doi.org/10.7554/eLife.73077

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Computational and Systems Biology
    Franck Simon, Maria Colomba Comes ... Herve Isambert
    Tools and Resources

    Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.