Anopheles salivary antigens as serological biomarkers of vector exposure and malaria transmission: A systematic review with multilevel modelling

  1. Ellen A Kearney
  2. Paul A Agius
  3. Victor Chaumeau
  4. Julia C Cutts
  5. Julie A Simpson
  6. Freya JI Fowkes  Is a corresponding author
  1. Burnet Institute, Australia
  2. Mahidol University, Thailand
  3. The University of Melbourne, Australia

Abstract

Background: Entomological surveillance for malaria is inherently resource-intensive and produces crude population-level measures of vector exposure which are insensitive in low-transmission settings. Antibodies against Anopheles salivary proteins measured at the individual-level may serve as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be quantified.

Methods: A systematic review of studies measuring antibodies against Anopheles salivary antigens (PROSPERO: CRD42020185449). Multilevel modelling (to account for multiple study-specific observations (level-one), nested within study (level-two), and study nested within country (level-three)) estimated associations between seroprevalence with Anopheles human biting rate (HBR) and malaria transmission measures.

Results: From 3981 studies identified in literature searches, 42 studies across 16 countries were included contributing 393 study-specific observations of anti-Anopheles salivary antibodies determined in 42,764 samples. A positive association between HBR (log transformed) and seroprevalence was found; overall a 2-fold (100% relative) increase in HBR was associated with a 23% increase in odds of seropositivity (OR: 1.23, 95%CI: 1.10-1.37, p<0.001). The association between HBR and Anopheles salivary antibodies was strongest with concordant, rather than discordant Anopheles species. Seroprevalence was also significantly positively associated with established epidemiological measures of malaria transmission: entomological inoculation rate, Plasmodium spp. prevalence, and malarial endemicity class.

Conclusions: Anopheles salivary antibody biomarkers can serve as a proxy measure for HBR and malaria transmission, and could monitor malaria receptivity of a population to sustain malaria transmission. Validation of Anopheles species-specific biomarkers are important given the global heterogeneity in the distribution of Anopheles species. Salivary biomarkers have the potential to transform surveillance by replacing impractical, inaccurate entomological investigations, especially in areas progressing towards malaria elimination.

Funding: Australian National Health and Medical Research Council, Wellcome Trust.

Data availability

The current manuscript is a systematic review with multilevel modelling of study level data. The constructed dataset and associated code used for analyses are available at https://github.com/ellenakearney/Anopheles_salivary_biomarker_systematic_review.git

The following data sets were generated
The following previously published data sets were used
    1. Weiss
    2. D. J.
    3. Lucas
    4. T. C.
    5. Nguyen
    6. M.
    7. Nandi
    8. A. K.
    9. Bisanzio
    10. D.
    11. Battle
    12. K. E.
    13. ... & Gething
    14. P. W.
    (2019) Plasmodium falciparum parasite rate in 2-10 year olds globally, 2000-2017
    Malaria Atlas Project Explorer, Plasmodium falciparum parasite rate in 2-10 year olds globally, 2000-2017.

Article and author information

Author details

  1. Ellen A Kearney

    Burnet Institute, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Paul A Agius

    Burnet Institute, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Victor Chaumeau

    Shoklo Malaria Research Unit, Mahidol University, Maesod, Thailand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0171-2176
  4. Julia C Cutts

    Burnet Institute, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Julie A Simpson

    Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2660-2013
  6. Freya JI Fowkes

    Burnet Institute, Melbourne, Australia
    For correspondence
    fowkes@burnet.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5832-9464

Funding

National Health and Medical Research Council (1134989)

  • Julie A Simpson
  • Freya JI Fowkes

National Health and Medical Research Council (1166753)

  • Freya JI Fowkes

National Health and Medical Research Council (1196068)

  • Julie A Simpson

Australian Government (Australian Government Research Training Program Scholarship)

  • Ellen A Kearney

Wellcome Trust (220211)

  • Victor Chaumeau

Victorian State Government (Operational Infrastructure Support Program received by the Burnet Institute.)

  • Ellen A Kearney
  • Paul A Agius
  • Julia C Cutts
  • Freya JI Fowkes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Kearney et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,167
    views
  • 203
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ellen A Kearney
  2. Paul A Agius
  3. Victor Chaumeau
  4. Julia C Cutts
  5. Julie A Simpson
  6. Freya JI Fowkes
(2021)
Anopheles salivary antigens as serological biomarkers of vector exposure and malaria transmission: A systematic review with multilevel modelling
eLife 10:e73080.
https://doi.org/10.7554/eLife.73080

Share this article

https://doi.org/10.7554/eLife.73080

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Amanda C Perofsky, John Huddleston ... Cécile Viboud
    Research Article

    Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Rashmi Sukumaran, Achuthsankar S Nair, Moinak Banerjee
    Research Article

    Burden of stroke differs by region, which could be attributed to differences in comorbid conditions and ethnicity. Genomewide variation acts as a proxy marker for ethnicity, and comorbid conditions. We present an integrated approach to understand this variation by considering prevalence and mortality rates of stroke and its comorbid risk for 204 countries from 2009 to 2019, and Genome-wide association studies (GWAS) risk variant for all these conditions. Global and regional trend analysis of rates using linear regression, correlation, and proportion analysis, signifies ethnogeographic differences. Interestingly, the comorbid conditions that act as risk drivers for stroke differed by regions, with more of metabolic risk in America and Europe, in contrast to high systolic blood pressure in Asian and African regions. GWAS risk loci of stroke and its comorbid conditions indicate distinct population stratification for each of these conditions, signifying for population-specific risk. Unique and shared genetic risk variants for stroke, and its comorbid and followed up with ethnic-specific variation can help in determining regional risk drivers for stroke. Unique ethnic-specific risk variants and their distinct patterns of linkage disequilibrium further uncover the drivers for phenotypic variation. Therefore, identifying population- and comorbidity-specific risk variants might help in defining the threshold for risk, and aid in developing population-specific prevention strategies for stroke.