Eye movements reveal spatiotemporal dynamics of visually-informed planning in navigation

  1. Seren Zhu  Is a corresponding author
  2. Kaushik Janakiraman Lakshminarasimhan
  3. Nastaran Arfaei
  4. Dora E Angelaki
  1. New York University, United States
  2. Columbia University, United States

Abstract

Goal-oriented navigation is widely understood to depend upon internal maps. Although this may be the case in many settings, humans tend to rely on vision in complex, unfamiliar environments. To study the nature of gaze during visually-guided navigation, we tasked humans to navigate to transiently visible goals in virtual mazes of varying levels of difficulty, observing that they took near-optimal trajectories in all arenas. By analyzing participants’ eye movements, we gained insights into how they performed visually-informed planning. The spatial distribution of gaze revealed that environmental complexity mediated a striking tradeoff in the extent to which attention was directed towards two complimentary aspects of the world model: the reward location and task-relevant transitions. The temporal evolution of gaze revealed rapid, sequential prospection of the future path, evocative of neural replay. These findings suggest that the spatiotemporal characteristics of gaze during navigation are significantly shaped by the unique cognitive computations underlying real-world, sequential decision making.

Data availability

Links to data and code are included in the manuscript.

The following data sets were generated

Article and author information

Author details

  1. Seren Zhu

    Center for Neural Science, New York University, New York, United States
    For correspondence
    lt1686@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0555-9690
  2. Kaushik Janakiraman Lakshminarasimhan

    Center for Theoretical Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nastaran Arfaei

    Department of Psychology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dora E Angelaki

    Center for Neural Science, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9650-8962

Funding

National Institutes of Health (U19-NS118246)

  • Seren Zhu
  • Nastaran Arfaei
  • Dora E Angelaki

National Institutes of Health (R01-EY022538)

  • Seren Zhu
  • Nastaran Arfaei
  • Dora E Angelaki

National Science Foundation (DBI-1707398)

  • Kaushik Janakiraman Lakshminarasimhan

Gatsby Charitable Foundation

  • Kaushik Janakiraman Lakshminarasimhan

The funders had no role in study design, data collection and interpretation, nor the decision to submit the work for publication.

Ethics

Human subjects: All experimental procedures were approved by the Institutional Review Board at New York University and all participants signed an informed consent form (IRB-FY2019-2599).

Copyright

© 2022, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,066
    views
  • 541
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seren Zhu
  2. Kaushik Janakiraman Lakshminarasimhan
  3. Nastaran Arfaei
  4. Dora E Angelaki
(2022)
Eye movements reveal spatiotemporal dynamics of visually-informed planning in navigation
eLife 11:e73097.
https://doi.org/10.7554/eLife.73097

Share this article

https://doi.org/10.7554/eLife.73097

Further reading

    1. Neuroscience
    Ilya A Rybak, Natalia A Shevtsova ... Alain Frigon
    Research Advance

    Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord. To investigate the effects of such an injury on the operation of the spinal locomotor network, we used our computational model of cat locomotion recently published in eLife (Rybak et al., 2024) to investigate and predict changes in cycle and phase durations following a thoracic lateral hemisection during treadmill locomotion in tied-belt (equal left-right speeds) and split-belt (unequal left-right speeds) conditions. In our simulations, the ‘hemisection’ was always applied to the right side. Based on our model, we hypothesized that following hemisection the contralesional (‘intact’, left) side of the spinal network is mostly controlled by supraspinal drives, whereas the ipsilesional (‘hemisected’, right) side is mostly controlled by somatosensory feedback. We then compared the simulated results with those obtained during experiments in adult cats before and after a mid-thoracic lateral hemisection on the right side in the same locomotor conditions. Our experimental results confirmed many effects of hemisection on cat locomotion predicted by our simulations. We show that having the ipsilesional hindlimb step on the slow belt, but not the fast belt, during split-belt locomotion substantially reduces the effects of lateral hemisection. The model provides explanations for changes in temporal characteristics of hindlimb locomotion following hemisection based on altered interactions between spinal circuits, supraspinal drives, and somatosensory feedback.

    1. Neuroscience
    Jill R Turner, Jocelyn Martin
    Insight

    Reversing opioid overdoses in rats using a drug that does not enter the brain prevents the sudden and severe withdrawal symptoms associated with therapeutics that target the central nervous system.