In situ imaging of bacterial outer membrane projections and associated protein complexes using electron cryo-tomography

  1. Mohammed Kaplan
  2. Georges Chreifi
  3. Lauren Ann Metskas
  4. Janine Liedtke
  5. Cecily R Wood
  6. Catherine M Oikonomou
  7. William J Nicolas
  8. Poorna Subramanian
  9. Lori A Zacharoff
  10. Yuhang Wang
  11. Yi-Wei Chang
  12. Morgan Beeby
  13. Megan Dobro
  14. Yongtao Zhu
  15. Mark McBride
  16. Ariane Briegel
  17. Carrie Shaffer
  18. Grant J Jensen  Is a corresponding author
  1. California Institute of Technology, United States
  2. Leiden University, United States
  3. University of Kentucky, United States
  4. University of Southern California, United States
  5. University of Pennsylvania, United States
  6. Imperial College London, United Kingdom
  7. Hampshire College, United States
  8. Minnesota State University, United States
  9. University of Wisconsin, United States
  10. Leiden University, Netherlands

Abstract

The ability to produce outer membrane projections in the form of tubular membrane extensions (MEs) and membrane vesicles (MVs) is a widespread phenomenon among diderm bacteria. Despite this, our knowledge of the ultrastructure of these extensions and their associated protein complexes remains limited. Here, we surveyed the ultrastructure and formation of MEs and MVs, and their associated protein complexes, in tens of thousands of electron cryo-tomograms of ~ 90 bacterial species that we have collected for various projects over the past 15 years (Jensen lab database), in addition to data generated in the Briegel lab. We identified outer MEs and MVs in 13 diderm bacterial species and classified several major ultrastructures: 1) tubes with a uniform diameter (with or without an internal scaffold), 2) tubes with irregular diameter, 3) tubes with a vesicular dilation at their tip, 4) pearling tubes, 5) connected chains of vesicles (with or without neck-like connectors), 6) budding vesicles and nanopods. We also identified several protein complexes associated with these MEs and MVs which were distributed either randomly or exclusively at the tip. These complexes include a secretin-like structure and a novel crown-shaped structure observed primarily in vesicles from lysed cells. In total, this work helps to characterize the diversity of bacterial membrane projections and lays the groundwork for future research in this field.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files and movies.

Article and author information

Author details

  1. Mohammed Kaplan

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0759-0459
  2. Georges Chreifi

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lauren Ann Metskas

    Biological Sciences, Chemistry, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8073-6960
  4. Janine Liedtke

    Leiden University, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2680-4130
  5. Cecily R Wood

    University of Kentucky, Kentucky, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Catherine M Oikonomou

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2312-4746
  7. William J Nicolas

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Poorna Subramanian

    Biological Sciences, Chemistry, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Lori A Zacharoff

    University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yuhang Wang

    California Institute of Technology, pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3715-8349
  11. Yi-Wei Chang

    Department of Biochemistry and Biophysics, University of Pennsylvania, Pennsylvania, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2391-473X
  12. Morgan Beeby

    Department of Life Sciencesa, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6413-9835
  13. Megan Dobro

    Hampshire College, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Yongtao Zhu

    Department of Biological Sciences, Minnesota State University, Mankato, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Mark McBride

    University of Wisconsin, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Ariane Briegel

    Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  17. Carrie Shaffer

    University of Kentucky, Kentucky, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7457-7422
  18. Grant J Jensen

    Biology and Bioengineering, California Institute of Technology, Pasadena, United States
    For correspondence
    jensen@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1556-4864

Funding

Foundation for the National Institutes of Health (R35 GM122588)

  • Grant J Jensen

Baxter Postdoctoral fellowship

  • Mohammed Kaplan

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO OCENW.GROOT.2019.063)

  • Mohammed Kaplan

National Institutes of Health (P20 GM130456)

  • Carrie Shaffer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Kaplan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,193
    views
  • 679
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammed Kaplan
  2. Georges Chreifi
  3. Lauren Ann Metskas
  4. Janine Liedtke
  5. Cecily R Wood
  6. Catherine M Oikonomou
  7. William J Nicolas
  8. Poorna Subramanian
  9. Lori A Zacharoff
  10. Yuhang Wang
  11. Yi-Wei Chang
  12. Morgan Beeby
  13. Megan Dobro
  14. Yongtao Zhu
  15. Mark McBride
  16. Ariane Briegel
  17. Carrie Shaffer
  18. Grant J Jensen
(2021)
In situ imaging of bacterial outer membrane projections and associated protein complexes using electron cryo-tomography
eLife 10:e73099.
https://doi.org/10.7554/eLife.73099

Share this article

https://doi.org/10.7554/eLife.73099

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Berit Siedentop, Viacheslav N Kachalov ... Sebastian Bonhoeffer
    Research Article

    Background:

    Under which conditions antibiotic combination therapy decelerates rather than accelerates resistance evolution is not well understood. We examined the effect of combining antibiotics on within-patient resistance development across various bacterial pathogens and antibiotics.

    Methods:

    We searched CENTRAL, EMBASE, and PubMed for (quasi)-randomised controlled trials (RCTs) published from database inception to 24 November 2022. Trials comparing antibiotic treatments with different numbers of antibiotics were included. Patients were considered to have acquired resistance if, at the follow-up culture, a resistant bacterium (as defined by the study authors) was detected that had not been present in the baseline culture. We combined results using a random effects model and performed meta-regression and stratified analyses. The trials’ risk of bias was assessed with the Cochrane tool.

    Results:

    42 trials were eligible and 29, including 5054 patients, qualified for statistical analysis. In most trials, resistance development was not the primary outcome and studies lacked power. The combined odds ratio for the acquisition of resistance comparing the group with the higher number of antibiotics with the comparison group was 1.23 (95% CI 0.68–2.25), with substantial between-study heterogeneity (I2=77%). We identified tentative evidence for potential beneficial or detrimental effects of antibiotic combination therapy for specific pathogens or medical conditions.

    Conclusions:

    The evidence for combining a higher number of antibiotics compared to fewer from RCTs is scarce and overall compatible with both benefit or harm. Trials powered to detect differences in resistance development or well-designed observational studies are required to clarify the impact of combination therapy on resistance.

    Funding:

    Support from the Swiss National Science Foundation (grant 310030B_176401 (SB, BS, CW), grant 32FP30-174281 (ME), grant 324730_207957 (RDK)) and from the National Institute of Allergy and Infectious Diseases (NIAID, cooperative agreement AI069924 (ME)) is gratefully acknowledged.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Vera Vollenweider, Karoline Rehm ... Rolf Kümmerli
    Research Article

    The global rise of antibiotic resistance calls for new drugs against bacterial pathogens. A common approach is to search for natural compounds deployed by microbes to inhibit competitors. Here, we show that the iron-chelating pyoverdines, siderophores produced by environmental Pseudomonas spp., have strong antibacterial properties by inducing iron starvation and growth arrest in pathogens. A screen of 320 natural Pseudomonas isolates used against 12 human pathogens uncovered several pyoverdines with particularly high antibacterial properties and distinct chemical characteristics. The most potent pyoverdine effectively reduced growth of the pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus in a concentration- and iron-dependent manner. Pyoverdine increased survival of infected Galleria mellonella host larvae and showed low toxicity for the host, mammalian cell lines, and erythrocytes. Furthermore, experimental evolution of pathogens combined with whole-genome sequencing revealed limited resistance evolution compared to an antibiotic. Thus, pyoverdines from environmental strains have the potential to become a new class of sustainable antibacterials against specific human pathogens.