Local field potentials reflect cortical population dynamics in a region-specific and frequency-dependent manner

  1. Cecilia Gallego-Carracedo
  2. Matthew G Perich
  3. Raeed H Chowdhury
  4. Lee E Miller
  5. Juan Álvaro Gallego  Is a corresponding author
  1. Spanish National Research Council, Spain
  2. Icahn School of Medicine at Mount Sinai, United States
  3. University of Pittsburgh, United States
  4. Northwestern University, United States
  5. Imperial College London, United Kingdom

Abstract

The spiking activity of populations of cortical neurons is well described by the dynamics of a small number of population-wide covariance patterns, the 'latent dynamics'. These latent dynamics are largely driven by the same correlated synaptic currents across the circuit that determine the generation of local field potentials (LFP). Yet, the relationship between latent dynamics and LFPs remains largely unexplored. Here, we characterised this relationship for three different regions of primate sensorimotor cortex during reaching. The correlation between latent dynamics and LFPs was frequency-dependent and varied across regions. However, for any given region, this relationship remained stable throughout the behaviour: in each of primary motor and premotor cortices, the LFP-latent dynamics correlation profile was remarkably similar between movement planning and execution. These robust associations between LFPs and neural population latent dynamics help bridge the wealth of studies reporting neural correlates of behaviour using either type of recordings.

Data availability

All data used for this paper are posted on Dryad.

The following data sets were generated

Article and author information

Author details

  1. Cecilia Gallego-Carracedo

    Centre for Automation and Robotics, Spanish National Research Council, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew G Perich

    Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9800-2386
  3. Raeed H Chowdhury

    Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5934-919X
  4. Lee E Miller

    Department of Biomedical Engineering, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8675-7140
  5. Juan Álvaro Gallego

    Department of Bioengineering, Imperial College London, London, United Kingdom
    For correspondence
    juan-alvaro.gallego@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2146-0703

Funding

National Institute of Neurological Disorders and Stroke (F31-NS092356)

  • Matthew G Perich

European Research Council (ERC-2020-StG-949660)

  • Juan Álvaro Gallego

National Science Foundation (DGE-1324585)

  • Raeed H Chowdhury

National Institute of Neurological Disorders and Stroke (T32-NS086749)

  • Raeed H Chowdhury

National Institute of Neurological Disorders and Stroke (NS053603)

  • Lee E Miller

National Institute of Neurological Disorders and Stroke (NS074044)

  • Lee E Miller

National Institute of Neurological Disorders and Stroke (NS095251)

  • Lee E Miller

Comunidad de Madrid (2017-T2/TIC-5263)

  • Juan Álvaro Gallego

Ministerio de Ciencia e Innovación (PGC2018-095846-A-I00)

  • Juan Álvaro Gallego

Engineering and Physical Sciences Research Council (EP/T020970/1)

  • Juan Álvaro Gallego

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All surgical and experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Northwestern University under protocol #IS00000367.

Copyright

© 2022, Gallego-Carracedo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,869
    views
  • 1,252
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cecilia Gallego-Carracedo
  2. Matthew G Perich
  3. Raeed H Chowdhury
  4. Lee E Miller
  5. Juan Álvaro Gallego
(2022)
Local field potentials reflect cortical population dynamics in a region-specific and frequency-dependent manner
eLife 11:e73155.
https://doi.org/10.7554/eLife.73155

Share this article

https://doi.org/10.7554/eLife.73155

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.