Local field potentials reflect cortical population dynamics in a region-specific and frequency-dependent manner
Abstract
The spiking activity of populations of cortical neurons is well described by the dynamics of a small number of population-wide covariance patterns, the 'latent dynamics'. These latent dynamics are largely driven by the same correlated synaptic currents across the circuit that determine the generation of local field potentials (LFP). Yet, the relationship between latent dynamics and LFPs remains largely unexplored. Here, we characterised this relationship for three different regions of primate sensorimotor cortex during reaching. The correlation between latent dynamics and LFPs was frequency-dependent and varied across regions. However, for any given region, this relationship remained stable throughout the behaviour: in each of primary motor and premotor cortices, the LFP-latent dynamics correlation profile was remarkably similar between movement planning and execution. These robust associations between LFPs and neural population latent dynamics help bridge the wealth of studies reporting neural correlates of behaviour using either type of recordings.
Data availability
All data used for this paper are posted on Dryad.
-
Local field potentials reflect cortical population dynamics in a region-specific and frequency-dependent mannerDryad Digital Repository, doi:10.5061/dryad.xd2547dkt.
Article and author information
Author details
Funding
National Institute of Neurological Disorders and Stroke (F31-NS092356)
- Matthew G Perich
European Research Council (ERC-2020-StG-949660)
- Juan Álvaro Gallego
National Science Foundation (DGE-1324585)
- Raeed H Chowdhury
National Institute of Neurological Disorders and Stroke (T32-NS086749)
- Raeed H Chowdhury
National Institute of Neurological Disorders and Stroke (NS053603)
- Lee E Miller
National Institute of Neurological Disorders and Stroke (NS074044)
- Lee E Miller
National Institute of Neurological Disorders and Stroke (NS095251)
- Lee E Miller
Comunidad de Madrid (2017-T2/TIC-5263)
- Juan Álvaro Gallego
Ministerio de Ciencia e Innovación (PGC2018-095846-A-I00)
- Juan Álvaro Gallego
Engineering and Physical Sciences Research Council (EP/T020970/1)
- Juan Álvaro Gallego
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All surgical and experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Northwestern University under protocol #IS00000367.
Copyright
© 2022, Gallego-Carracedo et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,349
- views
-
- 1,197
- downloads
-
- 32
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Addiction is commonly characterized by escalation of drug intake, compulsive drug seeking, and continued use despite harmful consequences. However, the factors contributing to the transition from moderate drug use to these problematic patterns remain unclear, particularly regarding the role of sex. Many preclinical studies have been limited by small sample sizes, low genetic diversity, and restricted drug access, making it challenging to model significant levels of intoxication or dependence and translate findings to humans. To address these limitations, we characterized addiction-like behaviors in a large sample of >500 outbred heterogeneous stock (HS) rats using an extended cocaine self-administration paradigm (6 hr/daily). We analyzed individual differences in escalation of intake, progressive ratio (PR) responding, continued use despite adverse consequences (contingent foot shocks), and irritability-like behavior during withdrawal. Principal component analysis showed that escalation of intake, progressive ratio responding, and continued use despite adverse consequences loaded onto a single factor that was distinct from irritability-like behaviors. Categorizing rats into resilient, mild, moderate, and severe addiction-like phenotypes showed that females exhibited higher addiction-like behaviors, with a lower proportion of resilient individuals compared to males. These findings suggest that, in genetically diverse rats with extended drug access, escalation of intake, continued use despite adverse consequences, and PR responding are highly correlated measures of a shared underlying construct. Furthermore, our results highlight sex differences in resilience to addiction-like behaviors.
-
- Neuroscience
Traumatic brain injury (TBI) caused by external mechanical forces is a major health burden worldwide, but the underlying mechanism in glia remains largely unclear. We report herein that Drosophila adults exhibit a defective blood–brain barrier, elevated innate immune responses, and astrocyte swelling upon consecutive strikes with a high-impact trauma device. RNA sequencing (RNA-seq) analysis of these astrocytes revealed upregulated expression of genes encoding PDGF and VEGF receptor-related (Pvr, a receptor tyrosine kinase), adaptor protein complex 1 (AP-1, a transcription factor complex of the c-Jun N-terminal kinase pathway) composed of Jun-related antigen (Jra) and kayak (kay), and matrix metalloproteinase 1 (Mmp1) following TBI. Interestingly, Pvr is both required and sufficient for AP-1 and Mmp1 upregulation, while knockdown of AP-1 expression in the background of Pvr overexpression in astrocytes rescued Mmp1 upregulation upon TBI, indicating that Pvr acts as the upstream receptor for the downstream AP-1–Mmp1 transduction. Moreover, dynamin-associated endocytosis was found to be an important regulatory step in downregulating Pvr signaling. Our results identify a new Pvr–AP-1–Mmp1 signaling pathway in astrocytes in response to TBI, providing potential targets for developing new therapeutic strategies for TBI.