Allosteric mechanism of signal transduction in the two-component system histidine kinase PhoQ

  1. Bruk Mensa  Is a corresponding author
  2. Nicholas F Polizzi
  3. Kathleen S Molnar
  4. Andrew M Natale
  5. Thomas Lemmin
  6. William F DeGrado  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Codexis Inc., United States
  3. Università della Svizzera Italiana, Switzerland

Abstract

Transmembrane signaling proteins couple extracytosolic sensors to cytosolic effectors. Here, we examine how binding of Mg2+ to the sensor domain of an E. coli two component histidine kinase (HK), PhoQ, modulates its cytoplasmic kinase domain. We use cysteine-crosslinking and reporter-gene assays to simultaneously and independently probe the signaling state of PhoQ's sensor and autokinase domains in a set of over 30 mutants. Strikingly, conservative single-site mutations distant from the sensor or catalytic site strongly influence PhoQ's ligand-sensitivity as well as the magnitude and direction of the signal. Data from 35 mutants are explained by a semi-empirical three-domain model in which the sensor, intervening HAMP, and catalytic domains can adopt kinase-promoting or inhibiting conformations that are in allosteric communication. The catalytic and sensor domains intrinsically favor a constitutively 'kinase-on' conformation, while the HAMP domain favors the 'off' state; when coupled, they create a bistable system responsive to physiological concentrations of Mg2+. Mutations alter signaling by locally modulating domain intrinsic equilibrium constants and interdomain couplings. Our model suggests signals transmit via interdomain allostery rather than propagation of a single concerted conformational change, explaining the diversity of signaling structural transitions observed in individual HK domains.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source data files have been provided for Figure 8. All source code for modeling work is provided as source code files 1-5.

Article and author information

Author details

  1. Bruk Mensa

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    For correspondence
    bruk.mensa@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8777-5946
  2. Nicholas F Polizzi

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kathleen S Molnar

    Codexis Inc., Redwood City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew M Natale

    Biophysics PhD program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Lemmin

    Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. William F DeGrado

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    For correspondence
    Bill.DeGrado@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (K99-GM138753)

  • Bruk Mensa
  • Nicholas F Polizzi
  • Andrew M Natale
  • Thomas Lemmin
  • William F DeGrado

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Mensa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,152
    views
  • 354
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bruk Mensa
  2. Nicholas F Polizzi
  3. Kathleen S Molnar
  4. Andrew M Natale
  5. Thomas Lemmin
  6. William F DeGrado
(2021)
Allosteric mechanism of signal transduction in the two-component system histidine kinase PhoQ
eLife 10:e73336.
https://doi.org/10.7554/eLife.73336

Share this article

https://doi.org/10.7554/eLife.73336

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.